Step |
Hyp |
Ref |
Expression |
1 |
|
dprdcntz2.1 |
⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) |
2 |
|
dprdcntz2.2 |
⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) |
3 |
|
dprdcntz2.c |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐼 ) |
4 |
|
dprdcntz2.d |
⊢ ( 𝜑 → 𝐷 ⊆ 𝐼 ) |
5 |
|
dprdcntz2.i |
⊢ ( 𝜑 → ( 𝐶 ∩ 𝐷 ) = ∅ ) |
6 |
|
dprddisj2.0 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
7 |
|
inss1 |
⊢ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ⊆ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) |
8 |
1 2 3
|
dprdres |
⊢ ( 𝜑 → ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) ) |
9 |
8
|
simprd |
⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
10 |
7 9
|
sstrid |
⊢ ( 𝜑 → ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
11 |
10
|
sseld |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) → 𝑥 ∈ ( 𝐺 DProd 𝑆 ) ) ) |
12 |
|
eqid |
⊢ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } |
13 |
6 12
|
eldprd |
⊢ ( dom 𝑆 = 𝐼 → ( 𝑥 ∈ ( 𝐺 DProd 𝑆 ) ↔ ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } 𝑥 = ( 𝐺 Σg 𝑓 ) ) ) ) |
14 |
2 13
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐺 DProd 𝑆 ) ↔ ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } 𝑥 = ( 𝐺 Σg 𝑓 ) ) ) ) |
15 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) → 𝐺 dom DProd 𝑆 ) |
16 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) → dom 𝑆 = 𝐼 ) |
17 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) → 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) |
18 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
19 |
12 15 16 17 18
|
dprdff |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) → 𝑓 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) |
20 |
19
|
feqmptd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) → 𝑓 = ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ‘ 𝑥 ) ) ) |
21 |
5
|
difeq2d |
⊢ ( 𝜑 → ( 𝐼 ∖ ( 𝐶 ∩ 𝐷 ) ) = ( 𝐼 ∖ ∅ ) ) |
22 |
|
difindi |
⊢ ( 𝐼 ∖ ( 𝐶 ∩ 𝐷 ) ) = ( ( 𝐼 ∖ 𝐶 ) ∪ ( 𝐼 ∖ 𝐷 ) ) |
23 |
|
dif0 |
⊢ ( 𝐼 ∖ ∅ ) = 𝐼 |
24 |
21 22 23
|
3eqtr3g |
⊢ ( 𝜑 → ( ( 𝐼 ∖ 𝐶 ) ∪ ( 𝐼 ∖ 𝐷 ) ) = 𝐼 ) |
25 |
|
eqimss2 |
⊢ ( ( ( 𝐼 ∖ 𝐶 ) ∪ ( 𝐼 ∖ 𝐷 ) ) = 𝐼 → 𝐼 ⊆ ( ( 𝐼 ∖ 𝐶 ) ∪ ( 𝐼 ∖ 𝐷 ) ) ) |
26 |
24 25
|
syl |
⊢ ( 𝜑 → 𝐼 ⊆ ( ( 𝐼 ∖ 𝐶 ) ∪ ( 𝐼 ∖ 𝐷 ) ) ) |
27 |
26
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) → 𝐼 ⊆ ( ( 𝐼 ∖ 𝐶 ) ∪ ( 𝐼 ∖ 𝐷 ) ) ) |
28 |
27
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ ( ( 𝐼 ∖ 𝐶 ) ∪ ( 𝐼 ∖ 𝐷 ) ) ) |
29 |
|
elun |
⊢ ( 𝑥 ∈ ( ( 𝐼 ∖ 𝐶 ) ∪ ( 𝐼 ∖ 𝐷 ) ) ↔ ( 𝑥 ∈ ( 𝐼 ∖ 𝐶 ) ∨ 𝑥 ∈ ( 𝐼 ∖ 𝐷 ) ) ) |
30 |
28 29
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑥 ∈ ( 𝐼 ∖ 𝐶 ) ∨ 𝑥 ∈ ( 𝐼 ∖ 𝐷 ) ) ) |
31 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) → 𝐶 ⊆ 𝐼 ) |
32 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) → ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ) |
33 |
6 12 15 16 31 17 32
|
dmdprdsplitlem |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) ∧ 𝑥 ∈ ( 𝐼 ∖ 𝐶 ) ) → ( 𝑓 ‘ 𝑥 ) = 0 ) |
34 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) → 𝐷 ⊆ 𝐼 ) |
35 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) → ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) |
36 |
6 12 15 16 34 17 35
|
dmdprdsplitlem |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) ∧ 𝑥 ∈ ( 𝐼 ∖ 𝐷 ) ) → ( 𝑓 ‘ 𝑥 ) = 0 ) |
37 |
33 36
|
jaodan |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) ∧ ( 𝑥 ∈ ( 𝐼 ∖ 𝐶 ) ∨ 𝑥 ∈ ( 𝐼 ∖ 𝐷 ) ) ) → ( 𝑓 ‘ 𝑥 ) = 0 ) |
38 |
30 37
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑥 ) = 0 ) |
39 |
38
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) → ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) ) |
40 |
20 39
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) → 𝑓 = ( 𝑥 ∈ 𝐼 ↦ 0 ) ) |
41 |
40
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) → ( 𝐺 Σg 𝑓 ) = ( 𝐺 Σg ( 𝑥 ∈ 𝐼 ↦ 0 ) ) ) |
42 |
|
dprdgrp |
⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 ∈ Grp ) |
43 |
|
grpmnd |
⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) |
44 |
1 42 43
|
3syl |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
45 |
1 2
|
dprddomcld |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
46 |
6
|
gsumz |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ V ) → ( 𝐺 Σg ( 𝑥 ∈ 𝐼 ↦ 0 ) ) = 0 ) |
47 |
44 45 46
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑥 ∈ 𝐼 ↦ 0 ) ) = 0 ) |
48 |
47
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) → ( 𝐺 Σg ( 𝑥 ∈ 𝐼 ↦ 0 ) ) = 0 ) |
49 |
41 48
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) → ( 𝐺 Σg 𝑓 ) = 0 ) |
50 |
49
|
ex |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) → ( ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) → ( 𝐺 Σg 𝑓 ) = 0 ) ) |
51 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝐺 Σg 𝑓 ) → ( 𝑥 ∈ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ↔ ( 𝐺 Σg 𝑓 ) ∈ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) ) |
52 |
|
elin |
⊢ ( ( 𝐺 Σg 𝑓 ) ∈ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ↔ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
53 |
51 52
|
bitrdi |
⊢ ( 𝑥 = ( 𝐺 Σg 𝑓 ) → ( 𝑥 ∈ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ↔ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) ) |
54 |
|
velsn |
⊢ ( 𝑥 ∈ { 0 } ↔ 𝑥 = 0 ) |
55 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝐺 Σg 𝑓 ) → ( 𝑥 = 0 ↔ ( 𝐺 Σg 𝑓 ) = 0 ) ) |
56 |
54 55
|
syl5bb |
⊢ ( 𝑥 = ( 𝐺 Σg 𝑓 ) → ( 𝑥 ∈ { 0 } ↔ ( 𝐺 Σg 𝑓 ) = 0 ) ) |
57 |
53 56
|
imbi12d |
⊢ ( 𝑥 = ( 𝐺 Σg 𝑓 ) → ( ( 𝑥 ∈ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) → 𝑥 ∈ { 0 } ) ↔ ( ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) → ( 𝐺 Σg 𝑓 ) = 0 ) ) ) |
58 |
50 57
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) → ( 𝑥 = ( 𝐺 Σg 𝑓 ) → ( 𝑥 ∈ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) → 𝑥 ∈ { 0 } ) ) ) |
59 |
58
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } 𝑥 = ( 𝐺 Σg 𝑓 ) → ( 𝑥 ∈ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) → 𝑥 ∈ { 0 } ) ) ) |
60 |
59
|
adantld |
⊢ ( 𝜑 → ( ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } 𝑥 = ( 𝐺 Σg 𝑓 ) ) → ( 𝑥 ∈ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) → 𝑥 ∈ { 0 } ) ) ) |
61 |
14 60
|
sylbid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐺 DProd 𝑆 ) → ( 𝑥 ∈ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) → 𝑥 ∈ { 0 } ) ) ) |
62 |
61
|
com23 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) → ( 𝑥 ∈ ( 𝐺 DProd 𝑆 ) → 𝑥 ∈ { 0 } ) ) ) |
63 |
11 62
|
mpdd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) → 𝑥 ∈ { 0 } ) ) |
64 |
63
|
ssrdv |
⊢ ( 𝜑 → ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ⊆ { 0 } ) |
65 |
8
|
simpld |
⊢ ( 𝜑 → 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ) |
66 |
|
dprdsubg |
⊢ ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
67 |
6
|
subg0cl |
⊢ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∈ ( SubGrp ‘ 𝐺 ) → 0 ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ) |
68 |
65 66 67
|
3syl |
⊢ ( 𝜑 → 0 ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ) |
69 |
1 2 4
|
dprdres |
⊢ ( 𝜑 → ( 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) ) |
70 |
69
|
simpld |
⊢ ( 𝜑 → 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) |
71 |
|
dprdsubg |
⊢ ( 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
72 |
6
|
subg0cl |
⊢ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ∈ ( SubGrp ‘ 𝐺 ) → 0 ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) |
73 |
70 71 72
|
3syl |
⊢ ( 𝜑 → 0 ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) |
74 |
68 73
|
elind |
⊢ ( 𝜑 → 0 ∈ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
75 |
74
|
snssd |
⊢ ( 𝜑 → { 0 } ⊆ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
76 |
64 75
|
eqssd |
⊢ ( 𝜑 → ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) = { 0 } ) |