| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dprdcntz2.1 |
|
| 2 |
|
dprdcntz2.2 |
|
| 3 |
|
dprdcntz2.c |
|
| 4 |
|
dprdcntz2.d |
|
| 5 |
|
dprdcntz2.i |
|
| 6 |
|
dprddisj2.0 |
|
| 7 |
|
inss1 |
|
| 8 |
1 2 3
|
dprdres |
|
| 9 |
8
|
simprd |
|
| 10 |
7 9
|
sstrid |
|
| 11 |
10
|
sseld |
|
| 12 |
|
eqid |
|
| 13 |
6 12
|
eldprd |
|
| 14 |
2 13
|
syl |
|
| 15 |
1
|
ad2antrr |
|
| 16 |
2
|
ad2antrr |
|
| 17 |
|
simplr |
|
| 18 |
|
eqid |
|
| 19 |
12 15 16 17 18
|
dprdff |
|
| 20 |
19
|
feqmptd |
|
| 21 |
5
|
difeq2d |
|
| 22 |
|
difindi |
|
| 23 |
|
dif0 |
|
| 24 |
21 22 23
|
3eqtr3g |
|
| 25 |
|
eqimss2 |
|
| 26 |
24 25
|
syl |
|
| 27 |
26
|
ad2antrr |
|
| 28 |
27
|
sselda |
|
| 29 |
|
elun |
|
| 30 |
28 29
|
sylib |
|
| 31 |
3
|
ad2antrr |
|
| 32 |
|
simprl |
|
| 33 |
6 12 15 16 31 17 32
|
dmdprdsplitlem |
|
| 34 |
4
|
ad2antrr |
|
| 35 |
|
simprr |
|
| 36 |
6 12 15 16 34 17 35
|
dmdprdsplitlem |
|
| 37 |
33 36
|
jaodan |
|
| 38 |
30 37
|
syldan |
|
| 39 |
38
|
mpteq2dva |
|
| 40 |
20 39
|
eqtrd |
|
| 41 |
40
|
oveq2d |
|
| 42 |
|
dprdgrp |
|
| 43 |
|
grpmnd |
|
| 44 |
1 42 43
|
3syl |
|
| 45 |
1 2
|
dprddomcld |
|
| 46 |
6
|
gsumz |
|
| 47 |
44 45 46
|
syl2anc |
|
| 48 |
47
|
ad2antrr |
|
| 49 |
41 48
|
eqtrd |
|
| 50 |
49
|
ex |
|
| 51 |
|
eleq1 |
|
| 52 |
|
elin |
|
| 53 |
51 52
|
bitrdi |
|
| 54 |
|
velsn |
|
| 55 |
|
eqeq1 |
|
| 56 |
54 55
|
bitrid |
|
| 57 |
53 56
|
imbi12d |
|
| 58 |
50 57
|
syl5ibrcom |
|
| 59 |
58
|
rexlimdva |
|
| 60 |
59
|
adantld |
|
| 61 |
14 60
|
sylbid |
|
| 62 |
61
|
com23 |
|
| 63 |
11 62
|
mpdd |
|
| 64 |
63
|
ssrdv |
|
| 65 |
8
|
simpld |
|
| 66 |
|
dprdsubg |
|
| 67 |
6
|
subg0cl |
|
| 68 |
65 66 67
|
3syl |
|
| 69 |
1 2 4
|
dprdres |
|
| 70 |
69
|
simpld |
|
| 71 |
|
dprdsubg |
|
| 72 |
6
|
subg0cl |
|
| 73 |
70 71 72
|
3syl |
|
| 74 |
68 73
|
elind |
|
| 75 |
74
|
snssd |
|
| 76 |
64 75
|
eqssd |
|