Metamath Proof Explorer


Theorem dmdprdsplitlem

Description: Lemma for dmdprdsplit . (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 14-Jul-2019)

Ref Expression
Hypotheses dmdprdsplitlem.0 0˙=0G
dmdprdsplitlem.w W=hiISi|finSupp0˙h
dmdprdsplitlem.1 φGdomDProdS
dmdprdsplitlem.2 φdomS=I
dmdprdsplitlem.3 φAI
dmdprdsplitlem.4 φFW
dmdprdsplitlem.5 φGFGDProdSA
Assertion dmdprdsplitlem φXIAFX=0˙

Proof

Step Hyp Ref Expression
1 dmdprdsplitlem.0 0˙=0G
2 dmdprdsplitlem.w W=hiISi|finSupp0˙h
3 dmdprdsplitlem.1 φGdomDProdS
4 dmdprdsplitlem.2 φdomS=I
5 dmdprdsplitlem.3 φAI
6 dmdprdsplitlem.4 φFW
7 dmdprdsplitlem.5 φGFGDProdSA
8 3 4 dprdf2 φS:ISubGrpG
9 8 5 fssresd φSA:ASubGrpG
10 fdm SA:ASubGrpGdomSA=A
11 eqid hiASAi|finSupp0˙h=hiASAi|finSupp0˙h
12 1 11 eldprd domSA=AGFGDProdSAGdomDProdSAfhiASAi|finSupp0˙hGF=Gf
13 9 10 12 3syl φGFGDProdSAGdomDProdSAfhiASAi|finSupp0˙hGF=Gf
14 7 13 mpbid φGdomDProdSAfhiASAi|finSupp0˙hGF=Gf
15 14 simprd φfhiASAi|finSupp0˙hGF=Gf
16 15 adantr φXIAfhiASAi|finSupp0˙hGF=Gf
17 simprr φXIAfhiASAi|finSupp0˙hGF=GfGF=Gf
18 14 simpld φGdomDProdSA
19 18 ad2antrr φXIAfhiASAi|finSupp0˙hGF=GfGdomDProdSA
20 9 10 syl φdomSA=A
21 20 ad2antrr φXIAfhiASAi|finSupp0˙hGF=GfdomSA=A
22 simprl φXIAfhiASAi|finSupp0˙hGF=GffhiASAi|finSupp0˙h
23 eqid BaseG=BaseG
24 11 19 21 22 23 dprdff φXIAfhiASAi|finSupp0˙hGF=Gff:ABaseG
25 24 feqmptd φXIAfhiASAi|finSupp0˙hGF=Gff=nAfn
26 5 ad2antrr φXIAfhiASAi|finSupp0˙hGF=GfAI
27 26 resmptd φXIAfhiASAi|finSupp0˙hGF=GfnIifnAfn0˙A=nAifnAfn0˙
28 iftrue nAifnAfn0˙=fn
29 28 mpteq2ia nAifnAfn0˙=nAfn
30 27 29 eqtrdi φXIAfhiASAi|finSupp0˙hGF=GfnIifnAfn0˙A=nAfn
31 25 30 eqtr4d φXIAfhiASAi|finSupp0˙hGF=Gff=nIifnAfn0˙A
32 31 oveq2d φXIAfhiASAi|finSupp0˙hGF=GfGf=GnIifnAfn0˙A
33 eqid CntzG=CntzG
34 3 ad2antrr φXIAfhiASAi|finSupp0˙hGF=GfGdomDProdS
35 dprdgrp GdomDProdSGGrp
36 grpmnd GGrpGMnd
37 34 35 36 3syl φXIAfhiASAi|finSupp0˙hGF=GfGMnd
38 3 4 dprddomcld φIV
39 38 ad2antrr φXIAfhiASAi|finSupp0˙hGF=GfIV
40 4 ad2antrr φXIAfhiASAi|finSupp0˙hGF=GfdomS=I
41 19 adantr φXIAfhiASAi|finSupp0˙hGF=GfnIGdomDProdSA
42 21 adantr φXIAfhiASAi|finSupp0˙hGF=GfnIdomSA=A
43 simplrl φXIAfhiASAi|finSupp0˙hGF=GfnIfhiASAi|finSupp0˙h
44 11 41 42 43 dprdfcl φXIAfhiASAi|finSupp0˙hGF=GfnInAfnSAn
45 fvres nASAn=Sn
46 45 adantl φXIAfhiASAi|finSupp0˙hGF=GfnInASAn=Sn
47 44 46 eleqtrd φXIAfhiASAi|finSupp0˙hGF=GfnInAfnSn
48 8 ad2antrr φXIAfhiASAi|finSupp0˙hGF=GfS:ISubGrpG
49 48 ffvelcdmda φXIAfhiASAi|finSupp0˙hGF=GfnISnSubGrpG
50 1 subg0cl SnSubGrpG0˙Sn
51 49 50 syl φXIAfhiASAi|finSupp0˙hGF=GfnI0˙Sn
52 51 adantr φXIAfhiASAi|finSupp0˙hGF=GfnI¬nA0˙Sn
53 47 52 ifclda φXIAfhiASAi|finSupp0˙hGF=GfnIifnAfn0˙Sn
54 38 mptexd φnIifnAfn0˙V
55 54 ad2antrr φXIAfhiASAi|finSupp0˙hGF=GfnIifnAfn0˙V
56 funmpt FunnIifnAfn0˙
57 56 a1i φXIAfhiASAi|finSupp0˙hGF=GfFunnIifnAfn0˙
58 11 19 21 22 dprdffsupp φXIAfhiASAi|finSupp0˙hGF=GffinSupp0˙f
59 simpr φXIAfhiASAi|finSupp0˙hGF=GfnIsupp0˙fnAnA
60 eldifn nIsupp0˙f¬nsupp0˙f
61 60 ad2antlr φXIAfhiASAi|finSupp0˙hGF=GfnIsupp0˙fnA¬nsupp0˙f
62 59 61 eldifd φXIAfhiASAi|finSupp0˙hGF=GfnIsupp0˙fnAnAsupp0˙f
63 ssidd φXIAfhiASAi|finSupp0˙hGF=Gffsupp0˙fsupp0˙
64 38 5 ssexd φAV
65 64 ad2antrr φXIAfhiASAi|finSupp0˙hGF=GfAV
66 1 fvexi 0˙V
67 66 a1i φXIAfhiASAi|finSupp0˙hGF=Gf0˙V
68 24 63 65 67 suppssr φXIAfhiASAi|finSupp0˙hGF=GfnAsupp0˙ffn=0˙
69 68 adantlr φXIAfhiASAi|finSupp0˙hGF=GfnIsupp0˙fnAsupp0˙ffn=0˙
70 62 69 syldan φXIAfhiASAi|finSupp0˙hGF=GfnIsupp0˙fnAfn=0˙
71 70 ifeq1da φXIAfhiASAi|finSupp0˙hGF=GfnIsupp0˙fifnAfn0˙=ifnA0˙0˙
72 ifid ifnA0˙0˙=0˙
73 71 72 eqtrdi φXIAfhiASAi|finSupp0˙hGF=GfnIsupp0˙fifnAfn0˙=0˙
74 73 39 suppss2 φXIAfhiASAi|finSupp0˙hGF=GfnIifnAfn0˙supp0˙fsupp0˙
75 fsuppsssupp nIifnAfn0˙VFunnIifnAfn0˙finSupp0˙fnIifnAfn0˙supp0˙fsupp0˙finSupp0˙nIifnAfn0˙
76 55 57 58 74 75 syl22anc φXIAfhiASAi|finSupp0˙hGF=GffinSupp0˙nIifnAfn0˙
77 2 34 40 53 76 dprdwd φXIAfhiASAi|finSupp0˙hGF=GfnIifnAfn0˙W
78 2 34 40 77 23 dprdff φXIAfhiASAi|finSupp0˙hGF=GfnIifnAfn0˙:IBaseG
79 2 34 40 77 33 dprdfcntz φXIAfhiASAi|finSupp0˙hGF=GfrannIifnAfn0˙CntzGrannIifnAfn0˙
80 eldifn nIA¬nA
81 80 adantl φXIAfhiASAi|finSupp0˙hGF=GfnIA¬nA
82 81 iffalsed φXIAfhiASAi|finSupp0˙hGF=GfnIAifnAfn0˙=0˙
83 82 39 suppss2 φXIAfhiASAi|finSupp0˙hGF=GfnIifnAfn0˙supp0˙A
84 23 1 33 37 39 78 79 83 76 gsumzres φXIAfhiASAi|finSupp0˙hGF=GfGnIifnAfn0˙A=GnIifnAfn0˙
85 17 32 84 3eqtrd φXIAfhiASAi|finSupp0˙hGF=GfGF=GnIifnAfn0˙
86 6 ad2antrr φXIAfhiASAi|finSupp0˙hGF=GfFW
87 1 2 34 40 86 77 dprdf11 φXIAfhiASAi|finSupp0˙hGF=GfGF=GnIifnAfn0˙F=nIifnAfn0˙
88 85 87 mpbid φXIAfhiASAi|finSupp0˙hGF=GfF=nIifnAfn0˙
89 88 fveq1d φXIAfhiASAi|finSupp0˙hGF=GfFX=nIifnAfn0˙X
90 eldifi XIAXI
91 90 ad2antlr φXIAfhiASAi|finSupp0˙hGF=GfXI
92 eleq1 n=XnAXA
93 fveq2 n=Xfn=fX
94 92 93 ifbieq1d n=XifnAfn0˙=ifXAfX0˙
95 eqid nIifnAfn0˙=nIifnAfn0˙
96 fvex fnV
97 96 66 ifex ifnAfn0˙V
98 94 95 97 fvmpt3i XInIifnAfn0˙X=ifXAfX0˙
99 91 98 syl φXIAfhiASAi|finSupp0˙hGF=GfnIifnAfn0˙X=ifXAfX0˙
100 eldifn XIA¬XA
101 100 ad2antlr φXIAfhiASAi|finSupp0˙hGF=Gf¬XA
102 101 iffalsed φXIAfhiASAi|finSupp0˙hGF=GfifXAfX0˙=0˙
103 89 99 102 3eqtrd φXIAfhiASAi|finSupp0˙hGF=GfFX=0˙
104 16 103 rexlimddv φXIAFX=0˙