Description: Two group sums over a direct product that give the same value are equal as functions. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 14-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eldprdi.0 | |
|
eldprdi.w | |
||
eldprdi.1 | |
||
eldprdi.2 | |
||
eldprdi.3 | |
||
dprdf11.4 | |
||
Assertion | dprdf11 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldprdi.0 | |
|
2 | eldprdi.w | |
|
3 | eldprdi.1 | |
|
4 | eldprdi.2 | |
|
5 | eldprdi.3 | |
|
6 | dprdf11.4 | |
|
7 | eqid | |
|
8 | 2 3 4 5 7 | dprdff | |
9 | 8 | ffnd | |
10 | 2 3 4 6 7 | dprdff | |
11 | 10 | ffnd | |
12 | eqfnfv | |
|
13 | 9 11 12 | syl2anc | |
14 | eqid | |
|
15 | 1 2 3 4 5 6 14 | dprdfsub | |
16 | 15 | simpld | |
17 | 1 2 3 4 16 | dprdfeq0 | |
18 | 15 | simprd | |
19 | 18 | eqeq1d | |
20 | 3 4 | dprddomcld | |
21 | fvexd | |
|
22 | fvexd | |
|
23 | 8 | feqmptd | |
24 | 10 | feqmptd | |
25 | 20 21 22 23 24 | offval2 | |
26 | 25 | eqeq1d | |
27 | ovex | |
|
28 | 27 | rgenw | |
29 | mpteqb | |
|
30 | 28 29 | ax-mp | |
31 | dprdgrp | |
|
32 | 3 31 | syl | |
33 | 32 | adantr | |
34 | 8 | ffvelcdmda | |
35 | 10 | ffvelcdmda | |
36 | 7 1 14 | grpsubeq0 | |
37 | 33 34 35 36 | syl3anc | |
38 | 37 | ralbidva | |
39 | 30 38 | bitrid | |
40 | 26 39 | bitrd | |
41 | 17 19 40 | 3bitr3d | |
42 | 7 | dprdssv | |
43 | 1 2 3 4 5 | eldprdi | |
44 | 42 43 | sselid | |
45 | 1 2 3 4 6 | eldprdi | |
46 | 42 45 | sselid | |
47 | 7 1 14 | grpsubeq0 | |
48 | 32 44 46 47 | syl3anc | |
49 | 13 41 48 | 3bitr2rd | |