Metamath Proof Explorer


Theorem dprdf11

Description: Two group sums over a direct product that give the same value are equal as functions. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 14-Jul-2019)

Ref Expression
Hypotheses eldprdi.0 0 ˙ = 0 G
eldprdi.w W = h i I S i | finSupp 0 ˙ h
eldprdi.1 φ G dom DProd S
eldprdi.2 φ dom S = I
eldprdi.3 φ F W
dprdf11.4 φ H W
Assertion dprdf11 φ G F = G H F = H

Proof

Step Hyp Ref Expression
1 eldprdi.0 0 ˙ = 0 G
2 eldprdi.w W = h i I S i | finSupp 0 ˙ h
3 eldprdi.1 φ G dom DProd S
4 eldprdi.2 φ dom S = I
5 eldprdi.3 φ F W
6 dprdf11.4 φ H W
7 eqid Base G = Base G
8 2 3 4 5 7 dprdff φ F : I Base G
9 8 ffnd φ F Fn I
10 2 3 4 6 7 dprdff φ H : I Base G
11 10 ffnd φ H Fn I
12 eqfnfv F Fn I H Fn I F = H x I F x = H x
13 9 11 12 syl2anc φ F = H x I F x = H x
14 eqid - G = - G
15 1 2 3 4 5 6 14 dprdfsub φ F - G f H W G F - G f H = G F - G G H
16 15 simpld φ F - G f H W
17 1 2 3 4 16 dprdfeq0 φ G F - G f H = 0 ˙ F - G f H = x I 0 ˙
18 15 simprd φ G F - G f H = G F - G G H
19 18 eqeq1d φ G F - G f H = 0 ˙ G F - G G H = 0 ˙
20 3 4 dprddomcld φ I V
21 fvexd φ x I F x V
22 fvexd φ x I H x V
23 8 feqmptd φ F = x I F x
24 10 feqmptd φ H = x I H x
25 20 21 22 23 24 offval2 φ F - G f H = x I F x - G H x
26 25 eqeq1d φ F - G f H = x I 0 ˙ x I F x - G H x = x I 0 ˙
27 ovex F x - G H x V
28 27 rgenw x I F x - G H x V
29 mpteqb x I F x - G H x V x I F x - G H x = x I 0 ˙ x I F x - G H x = 0 ˙
30 28 29 ax-mp x I F x - G H x = x I 0 ˙ x I F x - G H x = 0 ˙
31 dprdgrp G dom DProd S G Grp
32 3 31 syl φ G Grp
33 32 adantr φ x I G Grp
34 8 ffvelrnda φ x I F x Base G
35 10 ffvelrnda φ x I H x Base G
36 7 1 14 grpsubeq0 G Grp F x Base G H x Base G F x - G H x = 0 ˙ F x = H x
37 33 34 35 36 syl3anc φ x I F x - G H x = 0 ˙ F x = H x
38 37 ralbidva φ x I F x - G H x = 0 ˙ x I F x = H x
39 30 38 syl5bb φ x I F x - G H x = x I 0 ˙ x I F x = H x
40 26 39 bitrd φ F - G f H = x I 0 ˙ x I F x = H x
41 17 19 40 3bitr3d φ G F - G G H = 0 ˙ x I F x = H x
42 7 dprdssv G DProd S Base G
43 1 2 3 4 5 eldprdi φ G F G DProd S
44 42 43 sselid φ G F Base G
45 1 2 3 4 6 eldprdi φ G H G DProd S
46 42 45 sselid φ G H Base G
47 7 1 14 grpsubeq0 G Grp G F Base G G H Base G G F - G G H = 0 ˙ G F = G H
48 32 44 46 47 syl3anc φ G F - G G H = 0 ˙ G F = G H
49 13 41 48 3bitr2rd φ G F = G H F = H