Step |
Hyp |
Ref |
Expression |
1 |
|
eldprdi.0 |
|
2 |
|
eldprdi.w |
|
3 |
|
eldprdi.1 |
|
4 |
|
eldprdi.2 |
|
5 |
|
eldprdi.3 |
|
6 |
|
dprdfadd.4 |
|
7 |
|
dprdfsub.b |
|
8 |
|
eqid |
|
9 |
2 3 4 5 8
|
dprdff |
|
10 |
9
|
ffvelrnda |
|
11 |
2 3 4 6 8
|
dprdff |
|
12 |
11
|
ffvelrnda |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
8 13 14 7
|
grpsubval |
|
16 |
10 12 15
|
syl2anc |
|
17 |
16
|
mpteq2dva |
|
18 |
3 4
|
dprddomcld |
|
19 |
9
|
feqmptd |
|
20 |
11
|
feqmptd |
|
21 |
18 10 12 19 20
|
offval2 |
|
22 |
|
fvexd |
|
23 |
|
dprdgrp |
|
24 |
3 23
|
syl |
|
25 |
8 14 24
|
grpinvf1o |
|
26 |
|
f1of |
|
27 |
25 26
|
syl |
|
28 |
27
|
feqmptd |
|
29 |
|
fveq2 |
|
30 |
12 20 28 29
|
fmptco |
|
31 |
18 10 22 19 30
|
offval2 |
|
32 |
17 21 31
|
3eqtr4d |
|
33 |
1 2 3 4 6 14
|
dprdfinv |
|
34 |
33
|
simpld |
|
35 |
1 2 3 4 5 34 13
|
dprdfadd |
|
36 |
35
|
simpld |
|
37 |
32 36
|
eqeltrd |
|
38 |
32
|
oveq2d |
|
39 |
33
|
simprd |
|
40 |
39
|
oveq2d |
|
41 |
35
|
simprd |
|
42 |
8
|
dprdssv |
|
43 |
1 2 3 4 5
|
eldprdi |
|
44 |
42 43
|
sselid |
|
45 |
1 2 3 4 6
|
eldprdi |
|
46 |
42 45
|
sselid |
|
47 |
8 13 14 7
|
grpsubval |
|
48 |
44 46 47
|
syl2anc |
|
49 |
40 41 48
|
3eqtr4d |
|
50 |
38 49
|
eqtrd |
|
51 |
37 50
|
jca |
|