Metamath Proof Explorer


Theorem dprdfsub

Description: Take the difference of group sums over two families of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 14-Jul-2019)

Ref Expression
Hypotheses eldprdi.0 0 = ( 0g𝐺 )
eldprdi.w 𝑊 = { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp 0 }
eldprdi.1 ( 𝜑𝐺 dom DProd 𝑆 )
eldprdi.2 ( 𝜑 → dom 𝑆 = 𝐼 )
eldprdi.3 ( 𝜑𝐹𝑊 )
dprdfadd.4 ( 𝜑𝐻𝑊 )
dprdfsub.b = ( -g𝐺 )
Assertion dprdfsub ( 𝜑 → ( ( 𝐹f 𝐻 ) ∈ 𝑊 ∧ ( 𝐺 Σg ( 𝐹f 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) ( 𝐺 Σg 𝐻 ) ) ) )

Proof

Step Hyp Ref Expression
1 eldprdi.0 0 = ( 0g𝐺 )
2 eldprdi.w 𝑊 = { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp 0 }
3 eldprdi.1 ( 𝜑𝐺 dom DProd 𝑆 )
4 eldprdi.2 ( 𝜑 → dom 𝑆 = 𝐼 )
5 eldprdi.3 ( 𝜑𝐹𝑊 )
6 dprdfadd.4 ( 𝜑𝐻𝑊 )
7 dprdfsub.b = ( -g𝐺 )
8 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
9 2 3 4 5 8 dprdff ( 𝜑𝐹 : 𝐼 ⟶ ( Base ‘ 𝐺 ) )
10 9 ffvelrnda ( ( 𝜑𝑘𝐼 ) → ( 𝐹𝑘 ) ∈ ( Base ‘ 𝐺 ) )
11 2 3 4 6 8 dprdff ( 𝜑𝐻 : 𝐼 ⟶ ( Base ‘ 𝐺 ) )
12 11 ffvelrnda ( ( 𝜑𝑘𝐼 ) → ( 𝐻𝑘 ) ∈ ( Base ‘ 𝐺 ) )
13 eqid ( +g𝐺 ) = ( +g𝐺 )
14 eqid ( invg𝐺 ) = ( invg𝐺 )
15 8 13 14 7 grpsubval ( ( ( 𝐹𝑘 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝐻𝑘 ) ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝐹𝑘 ) ( 𝐻𝑘 ) ) = ( ( 𝐹𝑘 ) ( +g𝐺 ) ( ( invg𝐺 ) ‘ ( 𝐻𝑘 ) ) ) )
16 10 12 15 syl2anc ( ( 𝜑𝑘𝐼 ) → ( ( 𝐹𝑘 ) ( 𝐻𝑘 ) ) = ( ( 𝐹𝑘 ) ( +g𝐺 ) ( ( invg𝐺 ) ‘ ( 𝐻𝑘 ) ) ) )
17 16 mpteq2dva ( 𝜑 → ( 𝑘𝐼 ↦ ( ( 𝐹𝑘 ) ( 𝐻𝑘 ) ) ) = ( 𝑘𝐼 ↦ ( ( 𝐹𝑘 ) ( +g𝐺 ) ( ( invg𝐺 ) ‘ ( 𝐻𝑘 ) ) ) ) )
18 3 4 dprddomcld ( 𝜑𝐼 ∈ V )
19 9 feqmptd ( 𝜑𝐹 = ( 𝑘𝐼 ↦ ( 𝐹𝑘 ) ) )
20 11 feqmptd ( 𝜑𝐻 = ( 𝑘𝐼 ↦ ( 𝐻𝑘 ) ) )
21 18 10 12 19 20 offval2 ( 𝜑 → ( 𝐹f 𝐻 ) = ( 𝑘𝐼 ↦ ( ( 𝐹𝑘 ) ( 𝐻𝑘 ) ) ) )
22 fvexd ( ( 𝜑𝑘𝐼 ) → ( ( invg𝐺 ) ‘ ( 𝐻𝑘 ) ) ∈ V )
23 dprdgrp ( 𝐺 dom DProd 𝑆𝐺 ∈ Grp )
24 3 23 syl ( 𝜑𝐺 ∈ Grp )
25 8 14 24 grpinvf1o ( 𝜑 → ( invg𝐺 ) : ( Base ‘ 𝐺 ) –1-1-onto→ ( Base ‘ 𝐺 ) )
26 f1of ( ( invg𝐺 ) : ( Base ‘ 𝐺 ) –1-1-onto→ ( Base ‘ 𝐺 ) → ( invg𝐺 ) : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) )
27 25 26 syl ( 𝜑 → ( invg𝐺 ) : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) )
28 27 feqmptd ( 𝜑 → ( invg𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ( invg𝐺 ) ‘ 𝑥 ) ) )
29 fveq2 ( 𝑥 = ( 𝐻𝑘 ) → ( ( invg𝐺 ) ‘ 𝑥 ) = ( ( invg𝐺 ) ‘ ( 𝐻𝑘 ) ) )
30 12 20 28 29 fmptco ( 𝜑 → ( ( invg𝐺 ) ∘ 𝐻 ) = ( 𝑘𝐼 ↦ ( ( invg𝐺 ) ‘ ( 𝐻𝑘 ) ) ) )
31 18 10 22 19 30 offval2 ( 𝜑 → ( 𝐹f ( +g𝐺 ) ( ( invg𝐺 ) ∘ 𝐻 ) ) = ( 𝑘𝐼 ↦ ( ( 𝐹𝑘 ) ( +g𝐺 ) ( ( invg𝐺 ) ‘ ( 𝐻𝑘 ) ) ) ) )
32 17 21 31 3eqtr4d ( 𝜑 → ( 𝐹f 𝐻 ) = ( 𝐹f ( +g𝐺 ) ( ( invg𝐺 ) ∘ 𝐻 ) ) )
33 1 2 3 4 6 14 dprdfinv ( 𝜑 → ( ( ( invg𝐺 ) ∘ 𝐻 ) ∈ 𝑊 ∧ ( 𝐺 Σg ( ( invg𝐺 ) ∘ 𝐻 ) ) = ( ( invg𝐺 ) ‘ ( 𝐺 Σg 𝐻 ) ) ) )
34 33 simpld ( 𝜑 → ( ( invg𝐺 ) ∘ 𝐻 ) ∈ 𝑊 )
35 1 2 3 4 5 34 13 dprdfadd ( 𝜑 → ( ( 𝐹f ( +g𝐺 ) ( ( invg𝐺 ) ∘ 𝐻 ) ) ∈ 𝑊 ∧ ( 𝐺 Σg ( 𝐹f ( +g𝐺 ) ( ( invg𝐺 ) ∘ 𝐻 ) ) ) = ( ( 𝐺 Σg 𝐹 ) ( +g𝐺 ) ( 𝐺 Σg ( ( invg𝐺 ) ∘ 𝐻 ) ) ) ) )
36 35 simpld ( 𝜑 → ( 𝐹f ( +g𝐺 ) ( ( invg𝐺 ) ∘ 𝐻 ) ) ∈ 𝑊 )
37 32 36 eqeltrd ( 𝜑 → ( 𝐹f 𝐻 ) ∈ 𝑊 )
38 32 oveq2d ( 𝜑 → ( 𝐺 Σg ( 𝐹f 𝐻 ) ) = ( 𝐺 Σg ( 𝐹f ( +g𝐺 ) ( ( invg𝐺 ) ∘ 𝐻 ) ) ) )
39 33 simprd ( 𝜑 → ( 𝐺 Σg ( ( invg𝐺 ) ∘ 𝐻 ) ) = ( ( invg𝐺 ) ‘ ( 𝐺 Σg 𝐻 ) ) )
40 39 oveq2d ( 𝜑 → ( ( 𝐺 Σg 𝐹 ) ( +g𝐺 ) ( 𝐺 Σg ( ( invg𝐺 ) ∘ 𝐻 ) ) ) = ( ( 𝐺 Σg 𝐹 ) ( +g𝐺 ) ( ( invg𝐺 ) ‘ ( 𝐺 Σg 𝐻 ) ) ) )
41 35 simprd ( 𝜑 → ( 𝐺 Σg ( 𝐹f ( +g𝐺 ) ( ( invg𝐺 ) ∘ 𝐻 ) ) ) = ( ( 𝐺 Σg 𝐹 ) ( +g𝐺 ) ( 𝐺 Σg ( ( invg𝐺 ) ∘ 𝐻 ) ) ) )
42 8 dprdssv ( 𝐺 DProd 𝑆 ) ⊆ ( Base ‘ 𝐺 )
43 1 2 3 4 5 eldprdi ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ ( 𝐺 DProd 𝑆 ) )
44 42 43 sseldi ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ ( Base ‘ 𝐺 ) )
45 1 2 3 4 6 eldprdi ( 𝜑 → ( 𝐺 Σg 𝐻 ) ∈ ( 𝐺 DProd 𝑆 ) )
46 42 45 sseldi ( 𝜑 → ( 𝐺 Σg 𝐻 ) ∈ ( Base ‘ 𝐺 ) )
47 8 13 14 7 grpsubval ( ( ( 𝐺 Σg 𝐹 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝐺 Σg 𝐻 ) ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝐺 Σg 𝐹 ) ( 𝐺 Σg 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) ( +g𝐺 ) ( ( invg𝐺 ) ‘ ( 𝐺 Σg 𝐻 ) ) ) )
48 44 46 47 syl2anc ( 𝜑 → ( ( 𝐺 Σg 𝐹 ) ( 𝐺 Σg 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) ( +g𝐺 ) ( ( invg𝐺 ) ‘ ( 𝐺 Σg 𝐻 ) ) ) )
49 40 41 48 3eqtr4d ( 𝜑 → ( 𝐺 Σg ( 𝐹f ( +g𝐺 ) ( ( invg𝐺 ) ∘ 𝐻 ) ) ) = ( ( 𝐺 Σg 𝐹 ) ( 𝐺 Σg 𝐻 ) ) )
50 38 49 eqtrd ( 𝜑 → ( 𝐺 Σg ( 𝐹f 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) ( 𝐺 Σg 𝐻 ) ) )
51 37 50 jca ( 𝜑 → ( ( 𝐹f 𝐻 ) ∈ 𝑊 ∧ ( 𝐺 Σg ( 𝐹f 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) ( 𝐺 Σg 𝐻 ) ) ) )