| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldprdi.0 |
|- .0. = ( 0g ` G ) |
| 2 |
|
eldprdi.w |
|- W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
| 3 |
|
eldprdi.1 |
|- ( ph -> G dom DProd S ) |
| 4 |
|
eldprdi.2 |
|- ( ph -> dom S = I ) |
| 5 |
|
eldprdi.3 |
|- ( ph -> F e. W ) |
| 6 |
|
dprdf11.4 |
|- ( ph -> H e. W ) |
| 7 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 8 |
2 3 4 5 7
|
dprdff |
|- ( ph -> F : I --> ( Base ` G ) ) |
| 9 |
8
|
ffnd |
|- ( ph -> F Fn I ) |
| 10 |
2 3 4 6 7
|
dprdff |
|- ( ph -> H : I --> ( Base ` G ) ) |
| 11 |
10
|
ffnd |
|- ( ph -> H Fn I ) |
| 12 |
|
eqfnfv |
|- ( ( F Fn I /\ H Fn I ) -> ( F = H <-> A. x e. I ( F ` x ) = ( H ` x ) ) ) |
| 13 |
9 11 12
|
syl2anc |
|- ( ph -> ( F = H <-> A. x e. I ( F ` x ) = ( H ` x ) ) ) |
| 14 |
|
eqid |
|- ( -g ` G ) = ( -g ` G ) |
| 15 |
1 2 3 4 5 6 14
|
dprdfsub |
|- ( ph -> ( ( F oF ( -g ` G ) H ) e. W /\ ( G gsum ( F oF ( -g ` G ) H ) ) = ( ( G gsum F ) ( -g ` G ) ( G gsum H ) ) ) ) |
| 16 |
15
|
simpld |
|- ( ph -> ( F oF ( -g ` G ) H ) e. W ) |
| 17 |
1 2 3 4 16
|
dprdfeq0 |
|- ( ph -> ( ( G gsum ( F oF ( -g ` G ) H ) ) = .0. <-> ( F oF ( -g ` G ) H ) = ( x e. I |-> .0. ) ) ) |
| 18 |
15
|
simprd |
|- ( ph -> ( G gsum ( F oF ( -g ` G ) H ) ) = ( ( G gsum F ) ( -g ` G ) ( G gsum H ) ) ) |
| 19 |
18
|
eqeq1d |
|- ( ph -> ( ( G gsum ( F oF ( -g ` G ) H ) ) = .0. <-> ( ( G gsum F ) ( -g ` G ) ( G gsum H ) ) = .0. ) ) |
| 20 |
3 4
|
dprddomcld |
|- ( ph -> I e. _V ) |
| 21 |
|
fvexd |
|- ( ( ph /\ x e. I ) -> ( F ` x ) e. _V ) |
| 22 |
|
fvexd |
|- ( ( ph /\ x e. I ) -> ( H ` x ) e. _V ) |
| 23 |
8
|
feqmptd |
|- ( ph -> F = ( x e. I |-> ( F ` x ) ) ) |
| 24 |
10
|
feqmptd |
|- ( ph -> H = ( x e. I |-> ( H ` x ) ) ) |
| 25 |
20 21 22 23 24
|
offval2 |
|- ( ph -> ( F oF ( -g ` G ) H ) = ( x e. I |-> ( ( F ` x ) ( -g ` G ) ( H ` x ) ) ) ) |
| 26 |
25
|
eqeq1d |
|- ( ph -> ( ( F oF ( -g ` G ) H ) = ( x e. I |-> .0. ) <-> ( x e. I |-> ( ( F ` x ) ( -g ` G ) ( H ` x ) ) ) = ( x e. I |-> .0. ) ) ) |
| 27 |
|
ovex |
|- ( ( F ` x ) ( -g ` G ) ( H ` x ) ) e. _V |
| 28 |
27
|
rgenw |
|- A. x e. I ( ( F ` x ) ( -g ` G ) ( H ` x ) ) e. _V |
| 29 |
|
mpteqb |
|- ( A. x e. I ( ( F ` x ) ( -g ` G ) ( H ` x ) ) e. _V -> ( ( x e. I |-> ( ( F ` x ) ( -g ` G ) ( H ` x ) ) ) = ( x e. I |-> .0. ) <-> A. x e. I ( ( F ` x ) ( -g ` G ) ( H ` x ) ) = .0. ) ) |
| 30 |
28 29
|
ax-mp |
|- ( ( x e. I |-> ( ( F ` x ) ( -g ` G ) ( H ` x ) ) ) = ( x e. I |-> .0. ) <-> A. x e. I ( ( F ` x ) ( -g ` G ) ( H ` x ) ) = .0. ) |
| 31 |
|
dprdgrp |
|- ( G dom DProd S -> G e. Grp ) |
| 32 |
3 31
|
syl |
|- ( ph -> G e. Grp ) |
| 33 |
32
|
adantr |
|- ( ( ph /\ x e. I ) -> G e. Grp ) |
| 34 |
8
|
ffvelcdmda |
|- ( ( ph /\ x e. I ) -> ( F ` x ) e. ( Base ` G ) ) |
| 35 |
10
|
ffvelcdmda |
|- ( ( ph /\ x e. I ) -> ( H ` x ) e. ( Base ` G ) ) |
| 36 |
7 1 14
|
grpsubeq0 |
|- ( ( G e. Grp /\ ( F ` x ) e. ( Base ` G ) /\ ( H ` x ) e. ( Base ` G ) ) -> ( ( ( F ` x ) ( -g ` G ) ( H ` x ) ) = .0. <-> ( F ` x ) = ( H ` x ) ) ) |
| 37 |
33 34 35 36
|
syl3anc |
|- ( ( ph /\ x e. I ) -> ( ( ( F ` x ) ( -g ` G ) ( H ` x ) ) = .0. <-> ( F ` x ) = ( H ` x ) ) ) |
| 38 |
37
|
ralbidva |
|- ( ph -> ( A. x e. I ( ( F ` x ) ( -g ` G ) ( H ` x ) ) = .0. <-> A. x e. I ( F ` x ) = ( H ` x ) ) ) |
| 39 |
30 38
|
bitrid |
|- ( ph -> ( ( x e. I |-> ( ( F ` x ) ( -g ` G ) ( H ` x ) ) ) = ( x e. I |-> .0. ) <-> A. x e. I ( F ` x ) = ( H ` x ) ) ) |
| 40 |
26 39
|
bitrd |
|- ( ph -> ( ( F oF ( -g ` G ) H ) = ( x e. I |-> .0. ) <-> A. x e. I ( F ` x ) = ( H ` x ) ) ) |
| 41 |
17 19 40
|
3bitr3d |
|- ( ph -> ( ( ( G gsum F ) ( -g ` G ) ( G gsum H ) ) = .0. <-> A. x e. I ( F ` x ) = ( H ` x ) ) ) |
| 42 |
7
|
dprdssv |
|- ( G DProd S ) C_ ( Base ` G ) |
| 43 |
1 2 3 4 5
|
eldprdi |
|- ( ph -> ( G gsum F ) e. ( G DProd S ) ) |
| 44 |
42 43
|
sselid |
|- ( ph -> ( G gsum F ) e. ( Base ` G ) ) |
| 45 |
1 2 3 4 6
|
eldprdi |
|- ( ph -> ( G gsum H ) e. ( G DProd S ) ) |
| 46 |
42 45
|
sselid |
|- ( ph -> ( G gsum H ) e. ( Base ` G ) ) |
| 47 |
7 1 14
|
grpsubeq0 |
|- ( ( G e. Grp /\ ( G gsum F ) e. ( Base ` G ) /\ ( G gsum H ) e. ( Base ` G ) ) -> ( ( ( G gsum F ) ( -g ` G ) ( G gsum H ) ) = .0. <-> ( G gsum F ) = ( G gsum H ) ) ) |
| 48 |
32 44 46 47
|
syl3anc |
|- ( ph -> ( ( ( G gsum F ) ( -g ` G ) ( G gsum H ) ) = .0. <-> ( G gsum F ) = ( G gsum H ) ) ) |
| 49 |
13 41 48
|
3bitr2rd |
|- ( ph -> ( ( G gsum F ) = ( G gsum H ) <-> F = H ) ) |