Step |
Hyp |
Ref |
Expression |
1 |
|
eldprdi.0 |
|- .0. = ( 0g ` G ) |
2 |
|
eldprdi.w |
|- W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
3 |
|
eldprdi.1 |
|- ( ph -> G dom DProd S ) |
4 |
|
eldprdi.2 |
|- ( ph -> dom S = I ) |
5 |
|
eldprdi.3 |
|- ( ph -> F e. W ) |
6 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
7 |
2 3 4 5 6
|
dprdff |
|- ( ph -> F : I --> ( Base ` G ) ) |
8 |
7
|
feqmptd |
|- ( ph -> F = ( x e. I |-> ( F ` x ) ) ) |
9 |
8
|
adantr |
|- ( ( ph /\ ( G gsum F ) = .0. ) -> F = ( x e. I |-> ( F ` x ) ) ) |
10 |
2 3 4 5
|
dprdfcl |
|- ( ( ph /\ x e. I ) -> ( F ` x ) e. ( S ` x ) ) |
11 |
10
|
adantlr |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( F ` x ) e. ( S ` x ) ) |
12 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> G dom DProd S ) |
13 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> dom S = I ) |
14 |
|
simpr |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> x e. I ) |
15 |
|
eqid |
|- ( y e. I |-> if ( y = x , ( F ` x ) , .0. ) ) = ( y e. I |-> if ( y = x , ( F ` x ) , .0. ) ) |
16 |
1 2 12 13 14 11 15
|
dprdfid |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( ( y e. I |-> if ( y = x , ( F ` x ) , .0. ) ) e. W /\ ( G gsum ( y e. I |-> if ( y = x , ( F ` x ) , .0. ) ) ) = ( F ` x ) ) ) |
17 |
16
|
simpld |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( y e. I |-> if ( y = x , ( F ` x ) , .0. ) ) e. W ) |
18 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> F e. W ) |
19 |
|
eqid |
|- ( -g ` G ) = ( -g ` G ) |
20 |
1 2 12 13 17 18 19
|
dprdfsub |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( ( ( y e. I |-> if ( y = x , ( F ` x ) , .0. ) ) oF ( -g ` G ) F ) e. W /\ ( G gsum ( ( y e. I |-> if ( y = x , ( F ` x ) , .0. ) ) oF ( -g ` G ) F ) ) = ( ( G gsum ( y e. I |-> if ( y = x , ( F ` x ) , .0. ) ) ) ( -g ` G ) ( G gsum F ) ) ) ) |
21 |
20
|
simprd |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( G gsum ( ( y e. I |-> if ( y = x , ( F ` x ) , .0. ) ) oF ( -g ` G ) F ) ) = ( ( G gsum ( y e. I |-> if ( y = x , ( F ` x ) , .0. ) ) ) ( -g ` G ) ( G gsum F ) ) ) |
22 |
3 4
|
dprddomcld |
|- ( ph -> I e. _V ) |
23 |
22
|
ad2antrr |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> I e. _V ) |
24 |
|
fvex |
|- ( F ` x ) e. _V |
25 |
1
|
fvexi |
|- .0. e. _V |
26 |
24 25
|
ifex |
|- if ( y = x , ( F ` x ) , .0. ) e. _V |
27 |
26
|
a1i |
|- ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) -> if ( y = x , ( F ` x ) , .0. ) e. _V ) |
28 |
|
fvexd |
|- ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) -> ( F ` y ) e. _V ) |
29 |
|
eqidd |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( y e. I |-> if ( y = x , ( F ` x ) , .0. ) ) = ( y e. I |-> if ( y = x , ( F ` x ) , .0. ) ) ) |
30 |
7
|
ad2antrr |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> F : I --> ( Base ` G ) ) |
31 |
30
|
feqmptd |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> F = ( y e. I |-> ( F ` y ) ) ) |
32 |
23 27 28 29 31
|
offval2 |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( ( y e. I |-> if ( y = x , ( F ` x ) , .0. ) ) oF ( -g ` G ) F ) = ( y e. I |-> ( if ( y = x , ( F ` x ) , .0. ) ( -g ` G ) ( F ` y ) ) ) ) |
33 |
32
|
oveq2d |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( G gsum ( ( y e. I |-> if ( y = x , ( F ` x ) , .0. ) ) oF ( -g ` G ) F ) ) = ( G gsum ( y e. I |-> ( if ( y = x , ( F ` x ) , .0. ) ( -g ` G ) ( F ` y ) ) ) ) ) |
34 |
16
|
simprd |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( G gsum ( y e. I |-> if ( y = x , ( F ` x ) , .0. ) ) ) = ( F ` x ) ) |
35 |
|
simplr |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( G gsum F ) = .0. ) |
36 |
34 35
|
oveq12d |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( ( G gsum ( y e. I |-> if ( y = x , ( F ` x ) , .0. ) ) ) ( -g ` G ) ( G gsum F ) ) = ( ( F ` x ) ( -g ` G ) .0. ) ) |
37 |
|
dprdgrp |
|- ( G dom DProd S -> G e. Grp ) |
38 |
12 37
|
syl |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> G e. Grp ) |
39 |
30 14
|
ffvelrnd |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( F ` x ) e. ( Base ` G ) ) |
40 |
6 1 19
|
grpsubid1 |
|- ( ( G e. Grp /\ ( F ` x ) e. ( Base ` G ) ) -> ( ( F ` x ) ( -g ` G ) .0. ) = ( F ` x ) ) |
41 |
38 39 40
|
syl2anc |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( ( F ` x ) ( -g ` G ) .0. ) = ( F ` x ) ) |
42 |
36 41
|
eqtrd |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( ( G gsum ( y e. I |-> if ( y = x , ( F ` x ) , .0. ) ) ) ( -g ` G ) ( G gsum F ) ) = ( F ` x ) ) |
43 |
21 33 42
|
3eqtr3d |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( G gsum ( y e. I |-> ( if ( y = x , ( F ` x ) , .0. ) ( -g ` G ) ( F ` y ) ) ) ) = ( F ` x ) ) |
44 |
|
eqid |
|- ( Cntz ` G ) = ( Cntz ` G ) |
45 |
|
grpmnd |
|- ( G e. Grp -> G e. Mnd ) |
46 |
3 37 45
|
3syl |
|- ( ph -> G e. Mnd ) |
47 |
46
|
ad2antrr |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> G e. Mnd ) |
48 |
6
|
subgacs |
|- ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) ) |
49 |
|
acsmre |
|- ( ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
50 |
38 48 49
|
3syl |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
51 |
|
imassrn |
|- ( S " ( I \ { x } ) ) C_ ran S |
52 |
3 4
|
dprdf2 |
|- ( ph -> S : I --> ( SubGrp ` G ) ) |
53 |
52
|
ad2antrr |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> S : I --> ( SubGrp ` G ) ) |
54 |
53
|
frnd |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ran S C_ ( SubGrp ` G ) ) |
55 |
|
mresspw |
|- ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) -> ( SubGrp ` G ) C_ ~P ( Base ` G ) ) |
56 |
50 55
|
syl |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( SubGrp ` G ) C_ ~P ( Base ` G ) ) |
57 |
54 56
|
sstrd |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ran S C_ ~P ( Base ` G ) ) |
58 |
51 57
|
sstrid |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( S " ( I \ { x } ) ) C_ ~P ( Base ` G ) ) |
59 |
|
sspwuni |
|- ( ( S " ( I \ { x } ) ) C_ ~P ( Base ` G ) <-> U. ( S " ( I \ { x } ) ) C_ ( Base ` G ) ) |
60 |
58 59
|
sylib |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> U. ( S " ( I \ { x } ) ) C_ ( Base ` G ) ) |
61 |
|
eqid |
|- ( mrCls ` ( SubGrp ` G ) ) = ( mrCls ` ( SubGrp ` G ) ) |
62 |
61
|
mrccl |
|- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ( S " ( I \ { x } ) ) C_ ( Base ` G ) ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) e. ( SubGrp ` G ) ) |
63 |
50 60 62
|
syl2anc |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) e. ( SubGrp ` G ) ) |
64 |
|
subgsubm |
|- ( ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) e. ( SubGrp ` G ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) e. ( SubMnd ` G ) ) |
65 |
63 64
|
syl |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) e. ( SubMnd ` G ) ) |
66 |
|
oveq1 |
|- ( ( F ` x ) = if ( y = x , ( F ` x ) , .0. ) -> ( ( F ` x ) ( -g ` G ) ( F ` y ) ) = ( if ( y = x , ( F ` x ) , .0. ) ( -g ` G ) ( F ` y ) ) ) |
67 |
66
|
eleq1d |
|- ( ( F ` x ) = if ( y = x , ( F ` x ) , .0. ) -> ( ( ( F ` x ) ( -g ` G ) ( F ` y ) ) e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) <-> ( if ( y = x , ( F ` x ) , .0. ) ( -g ` G ) ( F ` y ) ) e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) ) |
68 |
|
oveq1 |
|- ( .0. = if ( y = x , ( F ` x ) , .0. ) -> ( .0. ( -g ` G ) ( F ` y ) ) = ( if ( y = x , ( F ` x ) , .0. ) ( -g ` G ) ( F ` y ) ) ) |
69 |
68
|
eleq1d |
|- ( .0. = if ( y = x , ( F ` x ) , .0. ) -> ( ( .0. ( -g ` G ) ( F ` y ) ) e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) <-> ( if ( y = x , ( F ` x ) , .0. ) ( -g ` G ) ( F ` y ) ) e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) ) |
70 |
|
simpr |
|- ( ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) /\ y = x ) -> y = x ) |
71 |
70
|
fveq2d |
|- ( ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) /\ y = x ) -> ( F ` y ) = ( F ` x ) ) |
72 |
71
|
oveq2d |
|- ( ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) /\ y = x ) -> ( ( F ` x ) ( -g ` G ) ( F ` y ) ) = ( ( F ` x ) ( -g ` G ) ( F ` x ) ) ) |
73 |
6 1 19
|
grpsubid |
|- ( ( G e. Grp /\ ( F ` x ) e. ( Base ` G ) ) -> ( ( F ` x ) ( -g ` G ) ( F ` x ) ) = .0. ) |
74 |
38 39 73
|
syl2anc |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( ( F ` x ) ( -g ` G ) ( F ` x ) ) = .0. ) |
75 |
1
|
subg0cl |
|- ( ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) e. ( SubGrp ` G ) -> .0. e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) |
76 |
63 75
|
syl |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> .0. e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) |
77 |
74 76
|
eqeltrd |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( ( F ` x ) ( -g ` G ) ( F ` x ) ) e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) |
78 |
77
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) /\ y = x ) -> ( ( F ` x ) ( -g ` G ) ( F ` x ) ) e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) |
79 |
72 78
|
eqeltrd |
|- ( ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) /\ y = x ) -> ( ( F ` x ) ( -g ` G ) ( F ` y ) ) e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) |
80 |
63
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) /\ -. y = x ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) e. ( SubGrp ` G ) ) |
81 |
80 75
|
syl |
|- ( ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) /\ -. y = x ) -> .0. e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) |
82 |
50 61 60
|
mrcssidd |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> U. ( S " ( I \ { x } ) ) C_ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) |
83 |
82
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) /\ -. y = x ) -> U. ( S " ( I \ { x } ) ) C_ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) |
84 |
2 12 13 18
|
dprdfcl |
|- ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) -> ( F ` y ) e. ( S ` y ) ) |
85 |
84
|
adantr |
|- ( ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) /\ -. y = x ) -> ( F ` y ) e. ( S ` y ) ) |
86 |
53
|
ffnd |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> S Fn I ) |
87 |
86
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) /\ -. y = x ) -> S Fn I ) |
88 |
|
difssd |
|- ( ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) /\ -. y = x ) -> ( I \ { x } ) C_ I ) |
89 |
|
df-ne |
|- ( y =/= x <-> -. y = x ) |
90 |
|
eldifsn |
|- ( y e. ( I \ { x } ) <-> ( y e. I /\ y =/= x ) ) |
91 |
90
|
biimpri |
|- ( ( y e. I /\ y =/= x ) -> y e. ( I \ { x } ) ) |
92 |
89 91
|
sylan2br |
|- ( ( y e. I /\ -. y = x ) -> y e. ( I \ { x } ) ) |
93 |
92
|
adantll |
|- ( ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) /\ -. y = x ) -> y e. ( I \ { x } ) ) |
94 |
|
fnfvima |
|- ( ( S Fn I /\ ( I \ { x } ) C_ I /\ y e. ( I \ { x } ) ) -> ( S ` y ) e. ( S " ( I \ { x } ) ) ) |
95 |
87 88 93 94
|
syl3anc |
|- ( ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) /\ -. y = x ) -> ( S ` y ) e. ( S " ( I \ { x } ) ) ) |
96 |
|
elunii |
|- ( ( ( F ` y ) e. ( S ` y ) /\ ( S ` y ) e. ( S " ( I \ { x } ) ) ) -> ( F ` y ) e. U. ( S " ( I \ { x } ) ) ) |
97 |
85 95 96
|
syl2anc |
|- ( ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) /\ -. y = x ) -> ( F ` y ) e. U. ( S " ( I \ { x } ) ) ) |
98 |
83 97
|
sseldd |
|- ( ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) /\ -. y = x ) -> ( F ` y ) e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) |
99 |
19
|
subgsubcl |
|- ( ( ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) e. ( SubGrp ` G ) /\ .0. e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) /\ ( F ` y ) e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) -> ( .0. ( -g ` G ) ( F ` y ) ) e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) |
100 |
80 81 98 99
|
syl3anc |
|- ( ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) /\ -. y = x ) -> ( .0. ( -g ` G ) ( F ` y ) ) e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) |
101 |
67 69 79 100
|
ifbothda |
|- ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) -> ( if ( y = x , ( F ` x ) , .0. ) ( -g ` G ) ( F ` y ) ) e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) |
102 |
101
|
fmpttd |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( y e. I |-> ( if ( y = x , ( F ` x ) , .0. ) ( -g ` G ) ( F ` y ) ) ) : I --> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) |
103 |
20
|
simpld |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( ( y e. I |-> if ( y = x , ( F ` x ) , .0. ) ) oF ( -g ` G ) F ) e. W ) |
104 |
32 103
|
eqeltrrd |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( y e. I |-> ( if ( y = x , ( F ` x ) , .0. ) ( -g ` G ) ( F ` y ) ) ) e. W ) |
105 |
2 12 13 104 44
|
dprdfcntz |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ran ( y e. I |-> ( if ( y = x , ( F ` x ) , .0. ) ( -g ` G ) ( F ` y ) ) ) C_ ( ( Cntz ` G ) ` ran ( y e. I |-> ( if ( y = x , ( F ` x ) , .0. ) ( -g ` G ) ( F ` y ) ) ) ) ) |
106 |
2 12 13 104
|
dprdffsupp |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( y e. I |-> ( if ( y = x , ( F ` x ) , .0. ) ( -g ` G ) ( F ` y ) ) ) finSupp .0. ) |
107 |
1 44 47 23 65 102 105 106
|
gsumzsubmcl |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( G gsum ( y e. I |-> ( if ( y = x , ( F ` x ) , .0. ) ( -g ` G ) ( F ` y ) ) ) ) e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) |
108 |
43 107
|
eqeltrrd |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( F ` x ) e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) |
109 |
11 108
|
elind |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( F ` x ) e. ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) ) |
110 |
12 13 14 1 61
|
dprddisj |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) = { .0. } ) |
111 |
109 110
|
eleqtrd |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( F ` x ) e. { .0. } ) |
112 |
|
elsni |
|- ( ( F ` x ) e. { .0. } -> ( F ` x ) = .0. ) |
113 |
111 112
|
syl |
|- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( F ` x ) = .0. ) |
114 |
113
|
mpteq2dva |
|- ( ( ph /\ ( G gsum F ) = .0. ) -> ( x e. I |-> ( F ` x ) ) = ( x e. I |-> .0. ) ) |
115 |
9 114
|
eqtrd |
|- ( ( ph /\ ( G gsum F ) = .0. ) -> F = ( x e. I |-> .0. ) ) |
116 |
115
|
ex |
|- ( ph -> ( ( G gsum F ) = .0. -> F = ( x e. I |-> .0. ) ) ) |
117 |
1
|
gsumz |
|- ( ( G e. Mnd /\ I e. _V ) -> ( G gsum ( x e. I |-> .0. ) ) = .0. ) |
118 |
46 22 117
|
syl2anc |
|- ( ph -> ( G gsum ( x e. I |-> .0. ) ) = .0. ) |
119 |
|
oveq2 |
|- ( F = ( x e. I |-> .0. ) -> ( G gsum F ) = ( G gsum ( x e. I |-> .0. ) ) ) |
120 |
119
|
eqeq1d |
|- ( F = ( x e. I |-> .0. ) -> ( ( G gsum F ) = .0. <-> ( G gsum ( x e. I |-> .0. ) ) = .0. ) ) |
121 |
118 120
|
syl5ibrcom |
|- ( ph -> ( F = ( x e. I |-> .0. ) -> ( G gsum F ) = .0. ) ) |
122 |
116 121
|
impbid |
|- ( ph -> ( ( G gsum F ) = .0. <-> F = ( x e. I |-> .0. ) ) ) |