| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumzsubmcl.0 |
|- .0. = ( 0g ` G ) |
| 2 |
|
gsumzsubmcl.z |
|- Z = ( Cntz ` G ) |
| 3 |
|
gsumzsubmcl.g |
|- ( ph -> G e. Mnd ) |
| 4 |
|
gsumzsubmcl.a |
|- ( ph -> A e. V ) |
| 5 |
|
gsumzsubmcl.s |
|- ( ph -> S e. ( SubMnd ` G ) ) |
| 6 |
|
gsumzsubmcl.f |
|- ( ph -> F : A --> S ) |
| 7 |
|
gsumzsubmcl.c |
|- ( ph -> ran F C_ ( Z ` ran F ) ) |
| 8 |
|
gsumzsubmcl.w |
|- ( ph -> F finSupp .0. ) |
| 9 |
|
eqid |
|- ( Base ` ( G |`s S ) ) = ( Base ` ( G |`s S ) ) |
| 10 |
|
eqid |
|- ( 0g ` ( G |`s S ) ) = ( 0g ` ( G |`s S ) ) |
| 11 |
|
eqid |
|- ( Cntz ` ( G |`s S ) ) = ( Cntz ` ( G |`s S ) ) |
| 12 |
|
eqid |
|- ( G |`s S ) = ( G |`s S ) |
| 13 |
12
|
submmnd |
|- ( S e. ( SubMnd ` G ) -> ( G |`s S ) e. Mnd ) |
| 14 |
5 13
|
syl |
|- ( ph -> ( G |`s S ) e. Mnd ) |
| 15 |
12
|
submbas |
|- ( S e. ( SubMnd ` G ) -> S = ( Base ` ( G |`s S ) ) ) |
| 16 |
5 15
|
syl |
|- ( ph -> S = ( Base ` ( G |`s S ) ) ) |
| 17 |
16
|
feq3d |
|- ( ph -> ( F : A --> S <-> F : A --> ( Base ` ( G |`s S ) ) ) ) |
| 18 |
6 17
|
mpbid |
|- ( ph -> F : A --> ( Base ` ( G |`s S ) ) ) |
| 19 |
6
|
frnd |
|- ( ph -> ran F C_ S ) |
| 20 |
7 19
|
ssind |
|- ( ph -> ran F C_ ( ( Z ` ran F ) i^i S ) ) |
| 21 |
12 2 11
|
resscntz |
|- ( ( S e. ( SubMnd ` G ) /\ ran F C_ S ) -> ( ( Cntz ` ( G |`s S ) ) ` ran F ) = ( ( Z ` ran F ) i^i S ) ) |
| 22 |
5 19 21
|
syl2anc |
|- ( ph -> ( ( Cntz ` ( G |`s S ) ) ` ran F ) = ( ( Z ` ran F ) i^i S ) ) |
| 23 |
20 22
|
sseqtrrd |
|- ( ph -> ran F C_ ( ( Cntz ` ( G |`s S ) ) ` ran F ) ) |
| 24 |
12 1
|
subm0 |
|- ( S e. ( SubMnd ` G ) -> .0. = ( 0g ` ( G |`s S ) ) ) |
| 25 |
5 24
|
syl |
|- ( ph -> .0. = ( 0g ` ( G |`s S ) ) ) |
| 26 |
8 25
|
breqtrd |
|- ( ph -> F finSupp ( 0g ` ( G |`s S ) ) ) |
| 27 |
9 10 11 14 4 18 23 26
|
gsumzcl |
|- ( ph -> ( ( G |`s S ) gsum F ) e. ( Base ` ( G |`s S ) ) ) |
| 28 |
4 5 6 12
|
gsumsubm |
|- ( ph -> ( G gsum F ) = ( ( G |`s S ) gsum F ) ) |
| 29 |
27 28 16
|
3eltr4d |
|- ( ph -> ( G gsum F ) e. S ) |