Metamath Proof Explorer


Theorem gsumzsubmcl

Description: Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 24-Apr-2016) (Revised by AV, 3-Jun-2019)

Ref Expression
Hypotheses gsumzsubmcl.0 0˙=0G
gsumzsubmcl.z Z=CntzG
gsumzsubmcl.g φGMnd
gsumzsubmcl.a φAV
gsumzsubmcl.s φSSubMndG
gsumzsubmcl.f φF:AS
gsumzsubmcl.c φranFZranF
gsumzsubmcl.w φfinSupp0˙F
Assertion gsumzsubmcl φGFS

Proof

Step Hyp Ref Expression
1 gsumzsubmcl.0 0˙=0G
2 gsumzsubmcl.z Z=CntzG
3 gsumzsubmcl.g φGMnd
4 gsumzsubmcl.a φAV
5 gsumzsubmcl.s φSSubMndG
6 gsumzsubmcl.f φF:AS
7 gsumzsubmcl.c φranFZranF
8 gsumzsubmcl.w φfinSupp0˙F
9 eqid BaseG𝑠S=BaseG𝑠S
10 eqid 0G𝑠S=0G𝑠S
11 eqid CntzG𝑠S=CntzG𝑠S
12 eqid G𝑠S=G𝑠S
13 12 submmnd SSubMndGG𝑠SMnd
14 5 13 syl φG𝑠SMnd
15 12 submbas SSubMndGS=BaseG𝑠S
16 5 15 syl φS=BaseG𝑠S
17 16 feq3d φF:ASF:ABaseG𝑠S
18 6 17 mpbid φF:ABaseG𝑠S
19 6 frnd φranFS
20 7 19 ssind φranFZranFS
21 12 2 11 resscntz SSubMndGranFSCntzG𝑠SranF=ZranFS
22 5 19 21 syl2anc φCntzG𝑠SranF=ZranFS
23 20 22 sseqtrrd φranFCntzG𝑠SranF
24 12 1 subm0 SSubMndG0˙=0G𝑠S
25 5 24 syl φ0˙=0G𝑠S
26 8 25 breqtrd φfinSupp0G𝑠SF
27 9 10 11 14 4 18 23 26 gsumzcl φG𝑠SFBaseG𝑠S
28 4 5 6 12 gsumsubm φGF=G𝑠SF
29 27 28 16 3eltr4d φGFS