| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dprdcntz2.1 |
|- ( ph -> G dom DProd S ) |
| 2 |
|
dprdcntz2.2 |
|- ( ph -> dom S = I ) |
| 3 |
|
dprdcntz2.c |
|- ( ph -> C C_ I ) |
| 4 |
|
dprdcntz2.d |
|- ( ph -> D C_ I ) |
| 5 |
|
dprdcntz2.i |
|- ( ph -> ( C i^i D ) = (/) ) |
| 6 |
|
dprddisj2.0 |
|- .0. = ( 0g ` G ) |
| 7 |
|
inss1 |
|- ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) C_ ( G DProd ( S |` C ) ) |
| 8 |
1 2 3
|
dprdres |
|- ( ph -> ( G dom DProd ( S |` C ) /\ ( G DProd ( S |` C ) ) C_ ( G DProd S ) ) ) |
| 9 |
8
|
simprd |
|- ( ph -> ( G DProd ( S |` C ) ) C_ ( G DProd S ) ) |
| 10 |
7 9
|
sstrid |
|- ( ph -> ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) C_ ( G DProd S ) ) |
| 11 |
10
|
sseld |
|- ( ph -> ( x e. ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) -> x e. ( G DProd S ) ) ) |
| 12 |
|
eqid |
|- { h e. X_ i e. I ( S ` i ) | h finSupp .0. } = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
| 13 |
6 12
|
eldprd |
|- ( dom S = I -> ( x e. ( G DProd S ) <-> ( G dom DProd S /\ E. f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } x = ( G gsum f ) ) ) ) |
| 14 |
2 13
|
syl |
|- ( ph -> ( x e. ( G DProd S ) <-> ( G dom DProd S /\ E. f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } x = ( G gsum f ) ) ) ) |
| 15 |
1
|
ad2antrr |
|- ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) -> G dom DProd S ) |
| 16 |
2
|
ad2antrr |
|- ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) -> dom S = I ) |
| 17 |
|
simplr |
|- ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) -> f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) |
| 18 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 19 |
12 15 16 17 18
|
dprdff |
|- ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) -> f : I --> ( Base ` G ) ) |
| 20 |
19
|
feqmptd |
|- ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) -> f = ( x e. I |-> ( f ` x ) ) ) |
| 21 |
5
|
difeq2d |
|- ( ph -> ( I \ ( C i^i D ) ) = ( I \ (/) ) ) |
| 22 |
|
difindi |
|- ( I \ ( C i^i D ) ) = ( ( I \ C ) u. ( I \ D ) ) |
| 23 |
|
dif0 |
|- ( I \ (/) ) = I |
| 24 |
21 22 23
|
3eqtr3g |
|- ( ph -> ( ( I \ C ) u. ( I \ D ) ) = I ) |
| 25 |
|
eqimss2 |
|- ( ( ( I \ C ) u. ( I \ D ) ) = I -> I C_ ( ( I \ C ) u. ( I \ D ) ) ) |
| 26 |
24 25
|
syl |
|- ( ph -> I C_ ( ( I \ C ) u. ( I \ D ) ) ) |
| 27 |
26
|
ad2antrr |
|- ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) -> I C_ ( ( I \ C ) u. ( I \ D ) ) ) |
| 28 |
27
|
sselda |
|- ( ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) /\ x e. I ) -> x e. ( ( I \ C ) u. ( I \ D ) ) ) |
| 29 |
|
elun |
|- ( x e. ( ( I \ C ) u. ( I \ D ) ) <-> ( x e. ( I \ C ) \/ x e. ( I \ D ) ) ) |
| 30 |
28 29
|
sylib |
|- ( ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) /\ x e. I ) -> ( x e. ( I \ C ) \/ x e. ( I \ D ) ) ) |
| 31 |
3
|
ad2antrr |
|- ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) -> C C_ I ) |
| 32 |
|
simprl |
|- ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) -> ( G gsum f ) e. ( G DProd ( S |` C ) ) ) |
| 33 |
6 12 15 16 31 17 32
|
dmdprdsplitlem |
|- ( ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) /\ x e. ( I \ C ) ) -> ( f ` x ) = .0. ) |
| 34 |
4
|
ad2antrr |
|- ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) -> D C_ I ) |
| 35 |
|
simprr |
|- ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) -> ( G gsum f ) e. ( G DProd ( S |` D ) ) ) |
| 36 |
6 12 15 16 34 17 35
|
dmdprdsplitlem |
|- ( ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) /\ x e. ( I \ D ) ) -> ( f ` x ) = .0. ) |
| 37 |
33 36
|
jaodan |
|- ( ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) /\ ( x e. ( I \ C ) \/ x e. ( I \ D ) ) ) -> ( f ` x ) = .0. ) |
| 38 |
30 37
|
syldan |
|- ( ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) /\ x e. I ) -> ( f ` x ) = .0. ) |
| 39 |
38
|
mpteq2dva |
|- ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) -> ( x e. I |-> ( f ` x ) ) = ( x e. I |-> .0. ) ) |
| 40 |
20 39
|
eqtrd |
|- ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) -> f = ( x e. I |-> .0. ) ) |
| 41 |
40
|
oveq2d |
|- ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) -> ( G gsum f ) = ( G gsum ( x e. I |-> .0. ) ) ) |
| 42 |
|
dprdgrp |
|- ( G dom DProd S -> G e. Grp ) |
| 43 |
|
grpmnd |
|- ( G e. Grp -> G e. Mnd ) |
| 44 |
1 42 43
|
3syl |
|- ( ph -> G e. Mnd ) |
| 45 |
1 2
|
dprddomcld |
|- ( ph -> I e. _V ) |
| 46 |
6
|
gsumz |
|- ( ( G e. Mnd /\ I e. _V ) -> ( G gsum ( x e. I |-> .0. ) ) = .0. ) |
| 47 |
44 45 46
|
syl2anc |
|- ( ph -> ( G gsum ( x e. I |-> .0. ) ) = .0. ) |
| 48 |
47
|
ad2antrr |
|- ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) -> ( G gsum ( x e. I |-> .0. ) ) = .0. ) |
| 49 |
41 48
|
eqtrd |
|- ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) -> ( G gsum f ) = .0. ) |
| 50 |
49
|
ex |
|- ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) -> ( ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) -> ( G gsum f ) = .0. ) ) |
| 51 |
|
eleq1 |
|- ( x = ( G gsum f ) -> ( x e. ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) <-> ( G gsum f ) e. ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) ) ) |
| 52 |
|
elin |
|- ( ( G gsum f ) e. ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) <-> ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) |
| 53 |
51 52
|
bitrdi |
|- ( x = ( G gsum f ) -> ( x e. ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) <-> ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) ) |
| 54 |
|
velsn |
|- ( x e. { .0. } <-> x = .0. ) |
| 55 |
|
eqeq1 |
|- ( x = ( G gsum f ) -> ( x = .0. <-> ( G gsum f ) = .0. ) ) |
| 56 |
54 55
|
bitrid |
|- ( x = ( G gsum f ) -> ( x e. { .0. } <-> ( G gsum f ) = .0. ) ) |
| 57 |
53 56
|
imbi12d |
|- ( x = ( G gsum f ) -> ( ( x e. ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) -> x e. { .0. } ) <-> ( ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) -> ( G gsum f ) = .0. ) ) ) |
| 58 |
50 57
|
syl5ibrcom |
|- ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) -> ( x = ( G gsum f ) -> ( x e. ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) -> x e. { .0. } ) ) ) |
| 59 |
58
|
rexlimdva |
|- ( ph -> ( E. f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } x = ( G gsum f ) -> ( x e. ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) -> x e. { .0. } ) ) ) |
| 60 |
59
|
adantld |
|- ( ph -> ( ( G dom DProd S /\ E. f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } x = ( G gsum f ) ) -> ( x e. ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) -> x e. { .0. } ) ) ) |
| 61 |
14 60
|
sylbid |
|- ( ph -> ( x e. ( G DProd S ) -> ( x e. ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) -> x e. { .0. } ) ) ) |
| 62 |
61
|
com23 |
|- ( ph -> ( x e. ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) -> ( x e. ( G DProd S ) -> x e. { .0. } ) ) ) |
| 63 |
11 62
|
mpdd |
|- ( ph -> ( x e. ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) -> x e. { .0. } ) ) |
| 64 |
63
|
ssrdv |
|- ( ph -> ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) C_ { .0. } ) |
| 65 |
8
|
simpld |
|- ( ph -> G dom DProd ( S |` C ) ) |
| 66 |
|
dprdsubg |
|- ( G dom DProd ( S |` C ) -> ( G DProd ( S |` C ) ) e. ( SubGrp ` G ) ) |
| 67 |
6
|
subg0cl |
|- ( ( G DProd ( S |` C ) ) e. ( SubGrp ` G ) -> .0. e. ( G DProd ( S |` C ) ) ) |
| 68 |
65 66 67
|
3syl |
|- ( ph -> .0. e. ( G DProd ( S |` C ) ) ) |
| 69 |
1 2 4
|
dprdres |
|- ( ph -> ( G dom DProd ( S |` D ) /\ ( G DProd ( S |` D ) ) C_ ( G DProd S ) ) ) |
| 70 |
69
|
simpld |
|- ( ph -> G dom DProd ( S |` D ) ) |
| 71 |
|
dprdsubg |
|- ( G dom DProd ( S |` D ) -> ( G DProd ( S |` D ) ) e. ( SubGrp ` G ) ) |
| 72 |
6
|
subg0cl |
|- ( ( G DProd ( S |` D ) ) e. ( SubGrp ` G ) -> .0. e. ( G DProd ( S |` D ) ) ) |
| 73 |
70 71 72
|
3syl |
|- ( ph -> .0. e. ( G DProd ( S |` D ) ) ) |
| 74 |
68 73
|
elind |
|- ( ph -> .0. e. ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) ) |
| 75 |
74
|
snssd |
|- ( ph -> { .0. } C_ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) ) |
| 76 |
64 75
|
eqssd |
|- ( ph -> ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) |