| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 2 |
1
|
dprdssv |
⊢ ( 𝐺 DProd 𝑆 ) ⊆ ( Base ‘ 𝐺 ) |
| 3 |
2
|
a1i |
⊢ ( 𝐺 dom DProd 𝑆 → ( 𝐺 DProd 𝑆 ) ⊆ ( Base ‘ 𝐺 ) ) |
| 4 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 5 |
|
eqid |
⊢ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } = { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } |
| 6 |
|
id |
⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 dom DProd 𝑆 ) |
| 7 |
|
eqidd |
⊢ ( 𝐺 dom DProd 𝑆 → dom 𝑆 = dom 𝑆 ) |
| 8 |
|
fvex |
⊢ ( 0g ‘ 𝐺 ) ∈ V |
| 9 |
|
fnconstg |
⊢ ( ( 0g ‘ 𝐺 ) ∈ V → ( dom 𝑆 × { ( 0g ‘ 𝐺 ) } ) Fn dom 𝑆 ) |
| 10 |
8 9
|
mp1i |
⊢ ( 𝐺 dom DProd 𝑆 → ( dom 𝑆 × { ( 0g ‘ 𝐺 ) } ) Fn dom 𝑆 ) |
| 11 |
8
|
fvconst2 |
⊢ ( 𝑘 ∈ dom 𝑆 → ( ( dom 𝑆 × { ( 0g ‘ 𝐺 ) } ) ‘ 𝑘 ) = ( 0g ‘ 𝐺 ) ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆 ) → ( ( dom 𝑆 × { ( 0g ‘ 𝐺 ) } ) ‘ 𝑘 ) = ( 0g ‘ 𝐺 ) ) |
| 13 |
|
dprdf |
⊢ ( 𝐺 dom DProd 𝑆 → 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 14 |
13
|
ffvelcdmda |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆 ) → ( 𝑆 ‘ 𝑘 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 15 |
4
|
subg0cl |
⊢ ( ( 𝑆 ‘ 𝑘 ) ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ ( 𝑆 ‘ 𝑘 ) ) |
| 16 |
14 15
|
syl |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆 ) → ( 0g ‘ 𝐺 ) ∈ ( 𝑆 ‘ 𝑘 ) ) |
| 17 |
12 16
|
eqeltrd |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆 ) → ( ( dom 𝑆 × { ( 0g ‘ 𝐺 ) } ) ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑘 ) ) |
| 18 |
17
|
ralrimiva |
⊢ ( 𝐺 dom DProd 𝑆 → ∀ 𝑘 ∈ dom 𝑆 ( ( dom 𝑆 × { ( 0g ‘ 𝐺 ) } ) ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑘 ) ) |
| 19 |
|
df-nel |
⊢ ( dom 𝑆 ∉ V ↔ ¬ dom 𝑆 ∈ V ) |
| 20 |
|
dprddomprc |
⊢ ( dom 𝑆 ∉ V → ¬ 𝐺 dom DProd 𝑆 ) |
| 21 |
19 20
|
sylbir |
⊢ ( ¬ dom 𝑆 ∈ V → ¬ 𝐺 dom DProd 𝑆 ) |
| 22 |
21
|
con4i |
⊢ ( 𝐺 dom DProd 𝑆 → dom 𝑆 ∈ V ) |
| 23 |
8
|
a1i |
⊢ ( 𝐺 dom DProd 𝑆 → ( 0g ‘ 𝐺 ) ∈ V ) |
| 24 |
22 23
|
fczfsuppd |
⊢ ( 𝐺 dom DProd 𝑆 → ( dom 𝑆 × { ( 0g ‘ 𝐺 ) } ) finSupp ( 0g ‘ 𝐺 ) ) |
| 25 |
5 6 7
|
dprdw |
⊢ ( 𝐺 dom DProd 𝑆 → ( ( dom 𝑆 × { ( 0g ‘ 𝐺 ) } ) ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ↔ ( ( dom 𝑆 × { ( 0g ‘ 𝐺 ) } ) Fn dom 𝑆 ∧ ∀ 𝑘 ∈ dom 𝑆 ( ( dom 𝑆 × { ( 0g ‘ 𝐺 ) } ) ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑘 ) ∧ ( dom 𝑆 × { ( 0g ‘ 𝐺 ) } ) finSupp ( 0g ‘ 𝐺 ) ) ) ) |
| 26 |
10 18 24 25
|
mpbir3and |
⊢ ( 𝐺 dom DProd 𝑆 → ( dom 𝑆 × { ( 0g ‘ 𝐺 ) } ) ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) |
| 27 |
4 5 6 7 26
|
eldprdi |
⊢ ( 𝐺 dom DProd 𝑆 → ( 𝐺 Σg ( dom 𝑆 × { ( 0g ‘ 𝐺 ) } ) ) ∈ ( 𝐺 DProd 𝑆 ) ) |
| 28 |
27
|
ne0d |
⊢ ( 𝐺 dom DProd 𝑆 → ( 𝐺 DProd 𝑆 ) ≠ ∅ ) |
| 29 |
|
eqid |
⊢ dom 𝑆 = dom 𝑆 |
| 30 |
4 5
|
eldprd |
⊢ ( dom 𝑆 = dom 𝑆 → ( 𝑥 ∈ ( 𝐺 DProd 𝑆 ) ↔ ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑥 = ( 𝐺 Σg 𝑓 ) ) ) ) |
| 31 |
30
|
baibd |
⊢ ( ( dom 𝑆 = dom 𝑆 ∧ 𝐺 dom DProd 𝑆 ) → ( 𝑥 ∈ ( 𝐺 DProd 𝑆 ) ↔ ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑥 = ( 𝐺 Σg 𝑓 ) ) ) |
| 32 |
4 5
|
eldprd |
⊢ ( dom 𝑆 = dom 𝑆 → ( 𝑦 ∈ ( 𝐺 DProd 𝑆 ) ↔ ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑦 = ( 𝐺 Σg 𝑔 ) ) ) ) |
| 33 |
32
|
baibd |
⊢ ( ( dom 𝑆 = dom 𝑆 ∧ 𝐺 dom DProd 𝑆 ) → ( 𝑦 ∈ ( 𝐺 DProd 𝑆 ) ↔ ∃ 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑦 = ( 𝐺 Σg 𝑔 ) ) ) |
| 34 |
31 33
|
anbi12d |
⊢ ( ( dom 𝑆 = dom 𝑆 ∧ 𝐺 dom DProd 𝑆 ) → ( ( 𝑥 ∈ ( 𝐺 DProd 𝑆 ) ∧ 𝑦 ∈ ( 𝐺 DProd 𝑆 ) ) ↔ ( ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑥 = ( 𝐺 Σg 𝑓 ) ∧ ∃ 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑦 = ( 𝐺 Σg 𝑔 ) ) ) ) |
| 35 |
29 34
|
mpan |
⊢ ( 𝐺 dom DProd 𝑆 → ( ( 𝑥 ∈ ( 𝐺 DProd 𝑆 ) ∧ 𝑦 ∈ ( 𝐺 DProd 𝑆 ) ) ↔ ( ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑥 = ( 𝐺 Σg 𝑓 ) ∧ ∃ 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑦 = ( 𝐺 Σg 𝑔 ) ) ) ) |
| 36 |
|
reeanv |
⊢ ( ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ∃ 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ( 𝑥 = ( 𝐺 Σg 𝑓 ) ∧ 𝑦 = ( 𝐺 Σg 𝑔 ) ) ↔ ( ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑥 = ( 𝐺 Σg 𝑓 ) ∧ ∃ 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑦 = ( 𝐺 Σg 𝑔 ) ) ) |
| 37 |
|
simpl |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ∧ 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) ) → 𝐺 dom DProd 𝑆 ) |
| 38 |
|
eqidd |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ∧ 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) ) → dom 𝑆 = dom 𝑆 ) |
| 39 |
|
simprl |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ∧ 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) ) → 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) |
| 40 |
|
simprr |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ∧ 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) ) → 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) |
| 41 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
| 42 |
4 5 37 38 39 40 41
|
dprdfsub |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ∧ 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) ) → ( ( 𝑓 ∘f ( -g ‘ 𝐺 ) 𝑔 ) ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ∧ ( 𝐺 Σg ( 𝑓 ∘f ( -g ‘ 𝐺 ) 𝑔 ) ) = ( ( 𝐺 Σg 𝑓 ) ( -g ‘ 𝐺 ) ( 𝐺 Σg 𝑔 ) ) ) ) |
| 43 |
42
|
simprd |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ∧ 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) ) → ( 𝐺 Σg ( 𝑓 ∘f ( -g ‘ 𝐺 ) 𝑔 ) ) = ( ( 𝐺 Σg 𝑓 ) ( -g ‘ 𝐺 ) ( 𝐺 Σg 𝑔 ) ) ) |
| 44 |
42
|
simpld |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ∧ 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) ) → ( 𝑓 ∘f ( -g ‘ 𝐺 ) 𝑔 ) ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) |
| 45 |
4 5 37 38 44
|
eldprdi |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ∧ 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) ) → ( 𝐺 Σg ( 𝑓 ∘f ( -g ‘ 𝐺 ) 𝑔 ) ) ∈ ( 𝐺 DProd 𝑆 ) ) |
| 46 |
43 45
|
eqeltrrd |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ∧ 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) ) → ( ( 𝐺 Σg 𝑓 ) ( -g ‘ 𝐺 ) ( 𝐺 Σg 𝑔 ) ) ∈ ( 𝐺 DProd 𝑆 ) ) |
| 47 |
|
oveq12 |
⊢ ( ( 𝑥 = ( 𝐺 Σg 𝑓 ) ∧ 𝑦 = ( 𝐺 Σg 𝑔 ) ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) = ( ( 𝐺 Σg 𝑓 ) ( -g ‘ 𝐺 ) ( 𝐺 Σg 𝑔 ) ) ) |
| 48 |
47
|
eleq1d |
⊢ ( ( 𝑥 = ( 𝐺 Σg 𝑓 ) ∧ 𝑦 = ( 𝐺 Σg 𝑔 ) ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝐺 DProd 𝑆 ) ↔ ( ( 𝐺 Σg 𝑓 ) ( -g ‘ 𝐺 ) ( 𝐺 Σg 𝑔 ) ) ∈ ( 𝐺 DProd 𝑆 ) ) ) |
| 49 |
46 48
|
syl5ibrcom |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ∧ 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) ) → ( ( 𝑥 = ( 𝐺 Σg 𝑓 ) ∧ 𝑦 = ( 𝐺 Σg 𝑔 ) ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝐺 DProd 𝑆 ) ) ) |
| 50 |
49
|
rexlimdvva |
⊢ ( 𝐺 dom DProd 𝑆 → ( ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ∃ 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ( 𝑥 = ( 𝐺 Σg 𝑓 ) ∧ 𝑦 = ( 𝐺 Σg 𝑔 ) ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝐺 DProd 𝑆 ) ) ) |
| 51 |
36 50
|
biimtrrid |
⊢ ( 𝐺 dom DProd 𝑆 → ( ( ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑥 = ( 𝐺 Σg 𝑓 ) ∧ ∃ 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑦 = ( 𝐺 Σg 𝑔 ) ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝐺 DProd 𝑆 ) ) ) |
| 52 |
35 51
|
sylbid |
⊢ ( 𝐺 dom DProd 𝑆 → ( ( 𝑥 ∈ ( 𝐺 DProd 𝑆 ) ∧ 𝑦 ∈ ( 𝐺 DProd 𝑆 ) ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝐺 DProd 𝑆 ) ) ) |
| 53 |
52
|
ralrimivv |
⊢ ( 𝐺 dom DProd 𝑆 → ∀ 𝑥 ∈ ( 𝐺 DProd 𝑆 ) ∀ 𝑦 ∈ ( 𝐺 DProd 𝑆 ) ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝐺 DProd 𝑆 ) ) |
| 54 |
|
dprdgrp |
⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 ∈ Grp ) |
| 55 |
1 41
|
issubg4 |
⊢ ( 𝐺 ∈ Grp → ( ( 𝐺 DProd 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ↔ ( ( 𝐺 DProd 𝑆 ) ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝐺 DProd 𝑆 ) ≠ ∅ ∧ ∀ 𝑥 ∈ ( 𝐺 DProd 𝑆 ) ∀ 𝑦 ∈ ( 𝐺 DProd 𝑆 ) ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝐺 DProd 𝑆 ) ) ) ) |
| 56 |
54 55
|
syl |
⊢ ( 𝐺 dom DProd 𝑆 → ( ( 𝐺 DProd 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ↔ ( ( 𝐺 DProd 𝑆 ) ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝐺 DProd 𝑆 ) ≠ ∅ ∧ ∀ 𝑥 ∈ ( 𝐺 DProd 𝑆 ) ∀ 𝑦 ∈ ( 𝐺 DProd 𝑆 ) ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝐺 DProd 𝑆 ) ) ) ) |
| 57 |
3 28 53 56
|
mpbir3and |
⊢ ( 𝐺 dom DProd 𝑆 → ( 𝐺 DProd 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) |