| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dprdres.1 |
⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) |
| 2 |
|
dprdres.2 |
⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) |
| 3 |
|
dprdres.3 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐼 ) |
| 4 |
|
dprdgrp |
⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 ∈ Grp ) |
| 5 |
1 4
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 6 |
1 2
|
dprdf2 |
⊢ ( 𝜑 → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 7 |
6 3
|
fssresd |
⊢ ( 𝜑 → ( 𝑆 ↾ 𝐴 ) : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 8 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → 𝐺 dom DProd 𝑆 ) |
| 9 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → dom 𝑆 = 𝐼 ) |
| 10 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → 𝐴 ⊆ 𝐼 ) |
| 11 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → 𝑥 ∈ 𝐴 ) |
| 12 |
10 11
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → 𝑥 ∈ 𝐼 ) |
| 13 |
|
eldifi |
⊢ ( 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) → 𝑦 ∈ 𝐴 ) |
| 14 |
13
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → 𝑦 ∈ 𝐴 ) |
| 15 |
10 14
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → 𝑦 ∈ 𝐼 ) |
| 16 |
|
eldifsni |
⊢ ( 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) → 𝑦 ≠ 𝑥 ) |
| 17 |
16
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → 𝑦 ≠ 𝑥 ) |
| 18 |
17
|
necomd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → 𝑥 ≠ 𝑦 ) |
| 19 |
|
eqid |
⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) |
| 20 |
8 9 12 15 18 19
|
dprdcntz |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
| 21 |
11
|
fvresd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) |
| 22 |
14
|
fvresd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑦 ) = ( 𝑆 ‘ 𝑦 ) ) |
| 23 |
22
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑦 ) ) = ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
| 24 |
20 21 23
|
3sstr4d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑦 ) ) ) |
| 25 |
24
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑦 ) ) ) |
| 26 |
|
fvres |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) |
| 27 |
26
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) |
| 28 |
27
|
ineq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) = ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) ) |
| 29 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 30 |
29
|
subgacs |
⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) ) |
| 31 |
|
acsmre |
⊢ ( ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
| 32 |
5 30 31
|
3syl |
⊢ ( 𝜑 → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
| 34 |
|
eqid |
⊢ ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) |
| 35 |
|
resss |
⊢ ( 𝑆 ↾ 𝐴 ) ⊆ 𝑆 |
| 36 |
|
imass1 |
⊢ ( ( 𝑆 ↾ 𝐴 ) ⊆ 𝑆 → ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ⊆ ( 𝑆 “ ( 𝐴 ∖ { 𝑥 } ) ) ) |
| 37 |
35 36
|
ax-mp |
⊢ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ⊆ ( 𝑆 “ ( 𝐴 ∖ { 𝑥 } ) ) |
| 38 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ⊆ 𝐼 ) |
| 39 |
|
ssdif |
⊢ ( 𝐴 ⊆ 𝐼 → ( 𝐴 ∖ { 𝑥 } ) ⊆ ( 𝐼 ∖ { 𝑥 } ) ) |
| 40 |
|
imass2 |
⊢ ( ( 𝐴 ∖ { 𝑥 } ) ⊆ ( 𝐼 ∖ { 𝑥 } ) → ( 𝑆 “ ( 𝐴 ∖ { 𝑥 } ) ) ⊆ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) |
| 41 |
38 39 40
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑆 “ ( 𝐴 ∖ { 𝑥 } ) ) ⊆ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) |
| 42 |
37 41
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ⊆ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) |
| 43 |
42
|
unissd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ⊆ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) |
| 44 |
|
imassrn |
⊢ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ran 𝑆 |
| 45 |
6
|
frnd |
⊢ ( 𝜑 → ran 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ) |
| 46 |
29
|
subgss |
⊢ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) → 𝑥 ⊆ ( Base ‘ 𝐺 ) ) |
| 47 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 ( Base ‘ 𝐺 ) ↔ 𝑥 ⊆ ( Base ‘ 𝐺 ) ) |
| 48 |
46 47
|
sylibr |
⊢ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) → 𝑥 ∈ 𝒫 ( Base ‘ 𝐺 ) ) |
| 49 |
48
|
ssriv |
⊢ ( SubGrp ‘ 𝐺 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) |
| 50 |
45 49
|
sstrdi |
⊢ ( 𝜑 → ran 𝑆 ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
| 51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ran 𝑆 ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
| 52 |
44 51
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
| 53 |
|
sspwuni |
⊢ ( ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ↔ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐺 ) ) |
| 54 |
52 53
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐺 ) ) |
| 55 |
33 34 43 54
|
mrcssd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) |
| 56 |
|
sslin |
⊢ ( ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) → ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) ⊆ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
| 57 |
55 56
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) ⊆ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
| 58 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐺 dom DProd 𝑆 ) |
| 59 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → dom 𝑆 = 𝐼 ) |
| 60 |
3
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐼 ) |
| 61 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 62 |
58 59 60 61 34
|
dprddisj |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) |
| 63 |
57 62
|
sseqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) ⊆ { ( 0g ‘ 𝐺 ) } ) |
| 64 |
6
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑆 ‘ 𝑥 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 65 |
60 64
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑆 ‘ 𝑥 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 66 |
61
|
subg0cl |
⊢ ( ( 𝑆 ‘ 𝑥 ) ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ ( 𝑆 ‘ 𝑥 ) ) |
| 67 |
65 66
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0g ‘ 𝐺 ) ∈ ( 𝑆 ‘ 𝑥 ) ) |
| 68 |
43 54
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐺 ) ) |
| 69 |
34
|
mrccl |
⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐺 ) ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 70 |
33 68 69
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 71 |
61
|
subg0cl |
⊢ ( ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) |
| 72 |
70 71
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0g ‘ 𝐺 ) ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) |
| 73 |
67 72
|
elind |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0g ‘ 𝐺 ) ∈ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) ) |
| 74 |
73
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → { ( 0g ‘ 𝐺 ) } ⊆ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) ) |
| 75 |
63 74
|
eqssd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) |
| 76 |
28 75
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) |
| 77 |
25 76
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑦 ) ) ∧ ( ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) |
| 78 |
77
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑦 ) ) ∧ ( ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) |
| 79 |
1 2
|
dprddomcld |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 80 |
79 3
|
ssexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 81 |
7
|
fdmd |
⊢ ( 𝜑 → dom ( 𝑆 ↾ 𝐴 ) = 𝐴 ) |
| 82 |
19 61 34
|
dmdprd |
⊢ ( ( 𝐴 ∈ V ∧ dom ( 𝑆 ↾ 𝐴 ) = 𝐴 ) → ( 𝐺 dom DProd ( 𝑆 ↾ 𝐴 ) ↔ ( 𝐺 ∈ Grp ∧ ( 𝑆 ↾ 𝐴 ) : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑦 ) ) ∧ ( ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ) ) |
| 83 |
80 81 82
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 dom DProd ( 𝑆 ↾ 𝐴 ) ↔ ( 𝐺 ∈ Grp ∧ ( 𝑆 ↾ 𝐴 ) : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑦 ) ) ∧ ( ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ) ) |
| 84 |
5 7 78 83
|
mpbir3and |
⊢ ( 𝜑 → 𝐺 dom DProd ( 𝑆 ↾ 𝐴 ) ) |
| 85 |
|
rnss |
⊢ ( ( 𝑆 ↾ 𝐴 ) ⊆ 𝑆 → ran ( 𝑆 ↾ 𝐴 ) ⊆ ran 𝑆 ) |
| 86 |
|
uniss |
⊢ ( ran ( 𝑆 ↾ 𝐴 ) ⊆ ran 𝑆 → ∪ ran ( 𝑆 ↾ 𝐴 ) ⊆ ∪ ran 𝑆 ) |
| 87 |
35 85 86
|
mp2b |
⊢ ∪ ran ( 𝑆 ↾ 𝐴 ) ⊆ ∪ ran 𝑆 |
| 88 |
87
|
a1i |
⊢ ( 𝜑 → ∪ ran ( 𝑆 ↾ 𝐴 ) ⊆ ∪ ran 𝑆 ) |
| 89 |
|
sspwuni |
⊢ ( ran 𝑆 ⊆ 𝒫 ( Base ‘ 𝐺 ) ↔ ∪ ran 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 90 |
50 89
|
sylib |
⊢ ( 𝜑 → ∪ ran 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 91 |
32 34 88 90
|
mrcssd |
⊢ ( 𝜑 → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran ( 𝑆 ↾ 𝐴 ) ) ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran 𝑆 ) ) |
| 92 |
34
|
dprdspan |
⊢ ( 𝐺 dom DProd ( 𝑆 ↾ 𝐴 ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐴 ) ) = ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran ( 𝑆 ↾ 𝐴 ) ) ) |
| 93 |
84 92
|
syl |
⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ 𝐴 ) ) = ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran ( 𝑆 ↾ 𝐴 ) ) ) |
| 94 |
34
|
dprdspan |
⊢ ( 𝐺 dom DProd 𝑆 → ( 𝐺 DProd 𝑆 ) = ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran 𝑆 ) ) |
| 95 |
1 94
|
syl |
⊢ ( 𝜑 → ( 𝐺 DProd 𝑆 ) = ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran 𝑆 ) ) |
| 96 |
91 93 95
|
3sstr4d |
⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ 𝐴 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
| 97 |
84 96
|
jca |
⊢ ( 𝜑 → ( 𝐺 dom DProd ( 𝑆 ↾ 𝐴 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐴 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) ) |