| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dprdss.1 |
⊢ ( 𝜑 → 𝐺 dom DProd 𝑇 ) |
| 2 |
|
dprdss.2 |
⊢ ( 𝜑 → dom 𝑇 = 𝐼 ) |
| 3 |
|
dprdss.3 |
⊢ ( 𝜑 → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 4 |
|
dprdss.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑇 ‘ 𝑘 ) ) |
| 5 |
|
eqid |
⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) |
| 6 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 7 |
|
eqid |
⊢ ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) |
| 8 |
|
dprdgrp |
⊢ ( 𝐺 dom DProd 𝑇 → 𝐺 ∈ Grp ) |
| 9 |
1 8
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 10 |
1 2
|
dprddomcld |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 11 |
4
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑇 ‘ 𝑘 ) ) |
| 12 |
|
fveq2 |
⊢ ( 𝑘 = 𝑥 → ( 𝑆 ‘ 𝑘 ) = ( 𝑆 ‘ 𝑥 ) ) |
| 13 |
|
fveq2 |
⊢ ( 𝑘 = 𝑥 → ( 𝑇 ‘ 𝑘 ) = ( 𝑇 ‘ 𝑥 ) ) |
| 14 |
12 13
|
sseq12d |
⊢ ( 𝑘 = 𝑥 → ( ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑇 ‘ 𝑘 ) ↔ ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑇 ‘ 𝑥 ) ) ) |
| 15 |
14
|
rspcv |
⊢ ( 𝑥 ∈ 𝐼 → ( ∀ 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑇 ‘ 𝑘 ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑇 ‘ 𝑥 ) ) ) |
| 16 |
11 15
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑇 ‘ 𝑥 ) ) |
| 17 |
16
|
3ad2antr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑇 ‘ 𝑥 ) ) |
| 18 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → 𝐺 dom DProd 𝑇 ) |
| 19 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → dom 𝑇 = 𝐼 ) |
| 20 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 ∈ 𝐼 ) |
| 21 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → 𝑦 ∈ 𝐼 ) |
| 22 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 ≠ 𝑦 ) |
| 23 |
18 19 20 21 22 5
|
dprdcntz |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝑇 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑇 ‘ 𝑦 ) ) ) |
| 24 |
1 2
|
dprdf2 |
⊢ ( 𝜑 → 𝑇 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → 𝑇 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 26 |
25 21
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝑇 ‘ 𝑦 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 27 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 28 |
27
|
subgss |
⊢ ( ( 𝑇 ‘ 𝑦 ) ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑇 ‘ 𝑦 ) ⊆ ( Base ‘ 𝐺 ) ) |
| 29 |
26 28
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝑇 ‘ 𝑦 ) ⊆ ( Base ‘ 𝐺 ) ) |
| 30 |
|
fveq2 |
⊢ ( 𝑘 = 𝑦 → ( 𝑆 ‘ 𝑘 ) = ( 𝑆 ‘ 𝑦 ) ) |
| 31 |
|
fveq2 |
⊢ ( 𝑘 = 𝑦 → ( 𝑇 ‘ 𝑘 ) = ( 𝑇 ‘ 𝑦 ) ) |
| 32 |
30 31
|
sseq12d |
⊢ ( 𝑘 = 𝑦 → ( ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑇 ‘ 𝑘 ) ↔ ( 𝑆 ‘ 𝑦 ) ⊆ ( 𝑇 ‘ 𝑦 ) ) ) |
| 33 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → ∀ 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑇 ‘ 𝑘 ) ) |
| 34 |
32 33 21
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝑆 ‘ 𝑦 ) ⊆ ( 𝑇 ‘ 𝑦 ) ) |
| 35 |
27 5
|
cntz2ss |
⊢ ( ( ( 𝑇 ‘ 𝑦 ) ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝑆 ‘ 𝑦 ) ⊆ ( 𝑇 ‘ 𝑦 ) ) → ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑇 ‘ 𝑦 ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
| 36 |
29 34 35
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑇 ‘ 𝑦 ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
| 37 |
23 36
|
sstrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝑇 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
| 38 |
17 37
|
sstrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
| 39 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐺 ∈ Grp ) |
| 40 |
27
|
subgacs |
⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) ) |
| 41 |
|
acsmre |
⊢ ( ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
| 42 |
39 40 41
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
| 43 |
|
difss |
⊢ ( 𝐼 ∖ { 𝑥 } ) ⊆ 𝐼 |
| 44 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ∀ 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑇 ‘ 𝑘 ) ) |
| 45 |
|
ssralv |
⊢ ( ( 𝐼 ∖ { 𝑥 } ) ⊆ 𝐼 → ( ∀ 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑇 ‘ 𝑘 ) → ∀ 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑇 ‘ 𝑘 ) ) ) |
| 46 |
43 44 45
|
mpsyl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ∀ 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑇 ‘ 𝑘 ) ) |
| 47 |
|
ss2iun |
⊢ ( ∀ 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑇 ‘ 𝑘 ) → ∪ 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑘 ) ⊆ ∪ 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑇 ‘ 𝑘 ) ) |
| 48 |
46 47
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ∪ 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑘 ) ⊆ ∪ 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑇 ‘ 𝑘 ) ) |
| 49 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 50 |
|
ffun |
⊢ ( 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) → Fun 𝑆 ) |
| 51 |
|
funiunfv |
⊢ ( Fun 𝑆 → ∪ 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑘 ) = ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) |
| 52 |
49 50 51
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ∪ 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑘 ) = ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) |
| 53 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑇 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 54 |
|
ffun |
⊢ ( 𝑇 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) → Fun 𝑇 ) |
| 55 |
|
funiunfv |
⊢ ( Fun 𝑇 → ∪ 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑇 ‘ 𝑘 ) = ∪ ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ) |
| 56 |
53 54 55
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ∪ 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑇 ‘ 𝑘 ) = ∪ ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ) |
| 57 |
48 52 56
|
3sstr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ∪ ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ) |
| 58 |
|
imassrn |
⊢ ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ran 𝑇 |
| 59 |
53
|
frnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ran 𝑇 ⊆ ( SubGrp ‘ 𝐺 ) ) |
| 60 |
|
mresspw |
⊢ ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
| 61 |
42 60
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( SubGrp ‘ 𝐺 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
| 62 |
59 61
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ran 𝑇 ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
| 63 |
58 62
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
| 64 |
|
sspwuni |
⊢ ( ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ↔ ∪ ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐺 ) ) |
| 65 |
63 64
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ∪ ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐺 ) ) |
| 66 |
42 7 57 65
|
mrcssd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) |
| 67 |
|
ss2in |
⊢ ( ( ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑇 ‘ 𝑥 ) ∧ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) → ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ⊆ ( ( 𝑇 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
| 68 |
16 66 67
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ⊆ ( ( 𝑇 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
| 69 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐺 dom DProd 𝑇 ) |
| 70 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → dom 𝑇 = 𝐼 ) |
| 71 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) |
| 72 |
69 70 71 6 7
|
dprddisj |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑇 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) |
| 73 |
68 72
|
sseqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ⊆ { ( 0g ‘ 𝐺 ) } ) |
| 74 |
5 6 7 9 10 3 38 73
|
dmdprdd |
⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) |
| 75 |
1
|
a1d |
⊢ ( 𝜑 → ( 𝐺 dom DProd 𝑆 → 𝐺 dom DProd 𝑇 ) ) |
| 76 |
|
ss2ixp |
⊢ ( ∀ 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑇 ‘ 𝑘 ) → X 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝑇 ‘ 𝑘 ) ) |
| 77 |
11 76
|
syl |
⊢ ( 𝜑 → X 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝑇 ‘ 𝑘 ) ) |
| 78 |
|
rabss2 |
⊢ ( X 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝑇 ‘ 𝑘 ) → { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ⊆ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑇 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) |
| 79 |
|
ssrexv |
⊢ ( { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ⊆ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑇 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } → ( ∃ 𝑓 ∈ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑎 = ( 𝐺 Σg 𝑓 ) → ∃ 𝑓 ∈ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑇 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑎 = ( 𝐺 Σg 𝑓 ) ) ) |
| 80 |
77 78 79
|
3syl |
⊢ ( 𝜑 → ( ∃ 𝑓 ∈ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑎 = ( 𝐺 Σg 𝑓 ) → ∃ 𝑓 ∈ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑇 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑎 = ( 𝐺 Σg 𝑓 ) ) ) |
| 81 |
75 80
|
anim12d |
⊢ ( 𝜑 → ( ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑎 = ( 𝐺 Σg 𝑓 ) ) → ( 𝐺 dom DProd 𝑇 ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑇 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑎 = ( 𝐺 Σg 𝑓 ) ) ) ) |
| 82 |
|
fdm |
⊢ ( 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) → dom 𝑆 = 𝐼 ) |
| 83 |
|
eqid |
⊢ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } = { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } |
| 84 |
6 83
|
eldprd |
⊢ ( dom 𝑆 = 𝐼 → ( 𝑎 ∈ ( 𝐺 DProd 𝑆 ) ↔ ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑎 = ( 𝐺 Σg 𝑓 ) ) ) ) |
| 85 |
3 82 84
|
3syl |
⊢ ( 𝜑 → ( 𝑎 ∈ ( 𝐺 DProd 𝑆 ) ↔ ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑎 = ( 𝐺 Σg 𝑓 ) ) ) ) |
| 86 |
|
eqid |
⊢ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑇 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } = { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑇 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } |
| 87 |
6 86
|
eldprd |
⊢ ( dom 𝑇 = 𝐼 → ( 𝑎 ∈ ( 𝐺 DProd 𝑇 ) ↔ ( 𝐺 dom DProd 𝑇 ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑇 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑎 = ( 𝐺 Σg 𝑓 ) ) ) ) |
| 88 |
2 87
|
syl |
⊢ ( 𝜑 → ( 𝑎 ∈ ( 𝐺 DProd 𝑇 ) ↔ ( 𝐺 dom DProd 𝑇 ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑇 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑎 = ( 𝐺 Σg 𝑓 ) ) ) ) |
| 89 |
81 85 88
|
3imtr4d |
⊢ ( 𝜑 → ( 𝑎 ∈ ( 𝐺 DProd 𝑆 ) → 𝑎 ∈ ( 𝐺 DProd 𝑇 ) ) ) |
| 90 |
89
|
ssrdv |
⊢ ( 𝜑 → ( 𝐺 DProd 𝑆 ) ⊆ ( 𝐺 DProd 𝑇 ) ) |
| 91 |
74 90
|
jca |
⊢ ( 𝜑 → ( 𝐺 dom DProd 𝑆 ∧ ( 𝐺 DProd 𝑆 ) ⊆ ( 𝐺 DProd 𝑇 ) ) ) |