Metamath Proof Explorer


Theorem cntz2ss

Description: Centralizers reverse the subset relation. (Contributed by Mario Carneiro, 3-Oct-2015)

Ref Expression
Hypotheses cntzrec.b 𝐵 = ( Base ‘ 𝑀 )
cntzrec.z 𝑍 = ( Cntz ‘ 𝑀 )
Assertion cntz2ss ( ( 𝑆𝐵𝑇𝑆 ) → ( 𝑍𝑆 ) ⊆ ( 𝑍𝑇 ) )

Proof

Step Hyp Ref Expression
1 cntzrec.b 𝐵 = ( Base ‘ 𝑀 )
2 cntzrec.z 𝑍 = ( Cntz ‘ 𝑀 )
3 eqid ( +g𝑀 ) = ( +g𝑀 )
4 3 2 cntzi ( ( 𝑥 ∈ ( 𝑍𝑆 ) ∧ 𝑦𝑆 ) → ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) )
5 4 ralrimiva ( 𝑥 ∈ ( 𝑍𝑆 ) → ∀ 𝑦𝑆 ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) )
6 ssralv ( 𝑇𝑆 → ( ∀ 𝑦𝑆 ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) → ∀ 𝑦𝑇 ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) ) )
7 6 adantl ( ( 𝑆𝐵𝑇𝑆 ) → ( ∀ 𝑦𝑆 ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) → ∀ 𝑦𝑇 ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) ) )
8 5 7 syl5 ( ( 𝑆𝐵𝑇𝑆 ) → ( 𝑥 ∈ ( 𝑍𝑆 ) → ∀ 𝑦𝑇 ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) ) )
9 8 ralrimiv ( ( 𝑆𝐵𝑇𝑆 ) → ∀ 𝑥 ∈ ( 𝑍𝑆 ) ∀ 𝑦𝑇 ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) )
10 1 2 cntzssv ( 𝑍𝑆 ) ⊆ 𝐵
11 sstr ( ( 𝑇𝑆𝑆𝐵 ) → 𝑇𝐵 )
12 11 ancoms ( ( 𝑆𝐵𝑇𝑆 ) → 𝑇𝐵 )
13 1 3 2 sscntz ( ( ( 𝑍𝑆 ) ⊆ 𝐵𝑇𝐵 ) → ( ( 𝑍𝑆 ) ⊆ ( 𝑍𝑇 ) ↔ ∀ 𝑥 ∈ ( 𝑍𝑆 ) ∀ 𝑦𝑇 ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) ) )
14 10 12 13 sylancr ( ( 𝑆𝐵𝑇𝑆 ) → ( ( 𝑍𝑆 ) ⊆ ( 𝑍𝑇 ) ↔ ∀ 𝑥 ∈ ( 𝑍𝑆 ) ∀ 𝑦𝑇 ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) ) )
15 9 14 mpbird ( ( 𝑆𝐵𝑇𝑆 ) → ( 𝑍𝑆 ) ⊆ ( 𝑍𝑇 ) )