Metamath Proof Explorer


Theorem dprdlub

Description: The direct product is smaller than any subgroup which contains the factors. (Contributed by Mario Carneiro, 25-Apr-2016)

Ref Expression
Hypotheses dprdlub.1 ( 𝜑𝐺 dom DProd 𝑆 )
dprdlub.2 ( 𝜑 → dom 𝑆 = 𝐼 )
dprdlub.3 ( 𝜑𝑇 ∈ ( SubGrp ‘ 𝐺 ) )
dprdlub.4 ( ( 𝜑𝑘𝐼 ) → ( 𝑆𝑘 ) ⊆ 𝑇 )
Assertion dprdlub ( 𝜑 → ( 𝐺 DProd 𝑆 ) ⊆ 𝑇 )

Proof

Step Hyp Ref Expression
1 dprdlub.1 ( 𝜑𝐺 dom DProd 𝑆 )
2 dprdlub.2 ( 𝜑 → dom 𝑆 = 𝐼 )
3 dprdlub.3 ( 𝜑𝑇 ∈ ( SubGrp ‘ 𝐺 ) )
4 dprdlub.4 ( ( 𝜑𝑘𝐼 ) → ( 𝑆𝑘 ) ⊆ 𝑇 )
5 eqid ( 0g𝐺 ) = ( 0g𝐺 )
6 eqid { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } = { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) }
7 5 6 dprdval ( ( 𝐺 dom DProd 𝑆 ∧ dom 𝑆 = 𝐼 ) → ( 𝐺 DProd 𝑆 ) = ran ( 𝑓 ∈ { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } ↦ ( 𝐺 Σg 𝑓 ) ) )
8 1 2 7 syl2anc ( 𝜑 → ( 𝐺 DProd 𝑆 ) = ran ( 𝑓 ∈ { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } ↦ ( 𝐺 Σg 𝑓 ) ) )
9 eqid ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 )
10 1 adantr ( ( 𝜑𝑓 ∈ { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } ) → 𝐺 dom DProd 𝑆 )
11 dprdgrp ( 𝐺 dom DProd 𝑆𝐺 ∈ Grp )
12 grpmnd ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd )
13 10 11 12 3syl ( ( 𝜑𝑓 ∈ { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } ) → 𝐺 ∈ Mnd )
14 1 2 dprddomcld ( 𝜑𝐼 ∈ V )
15 14 adantr ( ( 𝜑𝑓 ∈ { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } ) → 𝐼 ∈ V )
16 3 adantr ( ( 𝜑𝑓 ∈ { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } ) → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) )
17 subgsubm ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝑇 ∈ ( SubMnd ‘ 𝐺 ) )
18 16 17 syl ( ( 𝜑𝑓 ∈ { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } ) → 𝑇 ∈ ( SubMnd ‘ 𝐺 ) )
19 2 adantr ( ( 𝜑𝑓 ∈ { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } ) → dom 𝑆 = 𝐼 )
20 simpr ( ( 𝜑𝑓 ∈ { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } ) → 𝑓 ∈ { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } )
21 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
22 6 10 19 20 21 dprdff ( ( 𝜑𝑓 ∈ { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } ) → 𝑓 : 𝐼 ⟶ ( Base ‘ 𝐺 ) )
23 22 ffnd ( ( 𝜑𝑓 ∈ { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } ) → 𝑓 Fn 𝐼 )
24 4 adantlr ( ( ( 𝜑𝑓 ∈ { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } ) ∧ 𝑘𝐼 ) → ( 𝑆𝑘 ) ⊆ 𝑇 )
25 6 10 19 20 dprdfcl ( ( ( 𝜑𝑓 ∈ { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } ) ∧ 𝑘𝐼 ) → ( 𝑓𝑘 ) ∈ ( 𝑆𝑘 ) )
26 24 25 sseldd ( ( ( 𝜑𝑓 ∈ { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } ) ∧ 𝑘𝐼 ) → ( 𝑓𝑘 ) ∈ 𝑇 )
27 26 ralrimiva ( ( 𝜑𝑓 ∈ { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } ) → ∀ 𝑘𝐼 ( 𝑓𝑘 ) ∈ 𝑇 )
28 ffnfv ( 𝑓 : 𝐼𝑇 ↔ ( 𝑓 Fn 𝐼 ∧ ∀ 𝑘𝐼 ( 𝑓𝑘 ) ∈ 𝑇 ) )
29 23 27 28 sylanbrc ( ( 𝜑𝑓 ∈ { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } ) → 𝑓 : 𝐼𝑇 )
30 6 10 19 20 9 dprdfcntz ( ( 𝜑𝑓 ∈ { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } ) → ran 𝑓 ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran 𝑓 ) )
31 6 10 19 20 dprdffsupp ( ( 𝜑𝑓 ∈ { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } ) → 𝑓 finSupp ( 0g𝐺 ) )
32 5 9 13 15 18 29 30 31 gsumzsubmcl ( ( 𝜑𝑓 ∈ { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } ) → ( 𝐺 Σg 𝑓 ) ∈ 𝑇 )
33 32 fmpttd ( 𝜑 → ( 𝑓 ∈ { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } ↦ ( 𝐺 Σg 𝑓 ) ) : { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } ⟶ 𝑇 )
34 33 frnd ( 𝜑 → ran ( 𝑓 ∈ { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } ↦ ( 𝐺 Σg 𝑓 ) ) ⊆ 𝑇 )
35 8 34 eqsstrd ( 𝜑 → ( 𝐺 DProd 𝑆 ) ⊆ 𝑇 )