Metamath Proof Explorer


Theorem dprdub

Description: Each factor is a subset of the internal direct product. (Contributed by Mario Carneiro, 25-Apr-2016)

Ref Expression
Hypotheses dprdub.1 φGdomDProdS
dprdub.2 φdomS=I
dprdub.3 φXI
Assertion dprdub φSXGDProdS

Proof

Step Hyp Ref Expression
1 dprdub.1 φGdomDProdS
2 dprdub.2 φdomS=I
3 dprdub.3 φXI
4 eqid 0G=0G
5 eqid hiISi|finSupp0Gh=hiISi|finSupp0Gh
6 1 adantr φxSXGdomDProdS
7 2 adantr φxSXdomS=I
8 3 adantr φxSXXI
9 simpr φxSXxSX
10 eqid nIifn=Xx0G=nIifn=Xx0G
11 4 5 6 7 8 9 10 dprdfid φxSXnIifn=Xx0GhiISi|finSupp0GhGnIifn=Xx0G=x
12 11 simprd φxSXGnIifn=Xx0G=x
13 11 simpld φxSXnIifn=Xx0GhiISi|finSupp0Gh
14 4 5 6 7 13 eldprdi φxSXGnIifn=Xx0GGDProdS
15 12 14 eqeltrrd φxSXxGDProdS
16 15 ex φxSXxGDProdS
17 16 ssrdv φSXGDProdS