Metamath Proof Explorer


Theorem dmdprdpr

Description: A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 25-Apr-2016)

Ref Expression
Hypotheses dmdprdpr.z Z = Cntz G
dmdprdpr.0 0 ˙ = 0 G
dmdprdpr.s φ S SubGrp G
dmdprdpr.t φ T SubGrp G
Assertion dmdprdpr φ G dom DProd S 1 𝑜 T S Z T S T = 0 ˙

Proof

Step Hyp Ref Expression
1 dmdprdpr.z Z = Cntz G
2 dmdprdpr.0 0 ˙ = 0 G
3 dmdprdpr.s φ S SubGrp G
4 dmdprdpr.t φ T SubGrp G
5 0ex V
6 dprdsn V S SubGrp G G dom DProd S G DProd S = S
7 5 3 6 sylancr φ G dom DProd S G DProd S = S
8 7 simpld φ G dom DProd S
9 xpscf S 1 𝑜 T : 2 𝑜 SubGrp G S SubGrp G T SubGrp G
10 3 4 9 sylanbrc φ S 1 𝑜 T : 2 𝑜 SubGrp G
11 10 ffnd φ S 1 𝑜 T Fn 2 𝑜
12 5 prid1 1 𝑜
13 df2o3 2 𝑜 = 1 𝑜
14 12 13 eleqtrri 2 𝑜
15 fnressn S 1 𝑜 T Fn 2 𝑜 2 𝑜 S 1 𝑜 T = S 1 𝑜 T
16 11 14 15 sylancl φ S 1 𝑜 T = S 1 𝑜 T
17 fvpr0o S SubGrp G S 1 𝑜 T = S
18 3 17 syl φ S 1 𝑜 T = S
19 18 opeq2d φ S 1 𝑜 T = S
20 19 sneqd φ S 1 𝑜 T = S
21 16 20 eqtrd φ S 1 𝑜 T = S
22 8 21 breqtrrd φ G dom DProd S 1 𝑜 T
23 1on 1 𝑜 On
24 dprdsn 1 𝑜 On T SubGrp G G dom DProd 1 𝑜 T G DProd 1 𝑜 T = T
25 23 4 24 sylancr φ G dom DProd 1 𝑜 T G DProd 1 𝑜 T = T
26 25 simpld φ G dom DProd 1 𝑜 T
27 1oex 1 𝑜 V
28 27 prid2 1 𝑜 1 𝑜
29 28 13 eleqtrri 1 𝑜 2 𝑜
30 fnressn S 1 𝑜 T Fn 2 𝑜 1 𝑜 2 𝑜 S 1 𝑜 T 1 𝑜 = 1 𝑜 S 1 𝑜 T 1 𝑜
31 11 29 30 sylancl φ S 1 𝑜 T 1 𝑜 = 1 𝑜 S 1 𝑜 T 1 𝑜
32 fvpr1o T SubGrp G S 1 𝑜 T 1 𝑜 = T
33 4 32 syl φ S 1 𝑜 T 1 𝑜 = T
34 33 opeq2d φ 1 𝑜 S 1 𝑜 T 1 𝑜 = 1 𝑜 T
35 34 sneqd φ 1 𝑜 S 1 𝑜 T 1 𝑜 = 1 𝑜 T
36 31 35 eqtrd φ S 1 𝑜 T 1 𝑜 = 1 𝑜 T
37 26 36 breqtrrd φ G dom DProd S 1 𝑜 T 1 𝑜
38 1n0 1 𝑜
39 38 necomi 1 𝑜
40 disjsn2 1 𝑜 1 𝑜 =
41 39 40 mp1i φ 1 𝑜 =
42 df-pr 1 𝑜 = 1 𝑜
43 13 42 eqtri 2 𝑜 = 1 𝑜
44 43 a1i φ 2 𝑜 = 1 𝑜
45 10 41 44 1 2 dmdprdsplit φ G dom DProd S 1 𝑜 T G dom DProd S 1 𝑜 T G dom DProd S 1 𝑜 T 1 𝑜 G DProd S 1 𝑜 T Z G DProd S 1 𝑜 T 1 𝑜 G DProd S 1 𝑜 T G DProd S 1 𝑜 T 1 𝑜 = 0 ˙
46 3anass G dom DProd S 1 𝑜 T G dom DProd S 1 𝑜 T 1 𝑜 G DProd S 1 𝑜 T Z G DProd S 1 𝑜 T 1 𝑜 G DProd S 1 𝑜 T G DProd S 1 𝑜 T 1 𝑜 = 0 ˙ G dom DProd S 1 𝑜 T G dom DProd S 1 𝑜 T 1 𝑜 G DProd S 1 𝑜 T Z G DProd S 1 𝑜 T 1 𝑜 G DProd S 1 𝑜 T G DProd S 1 𝑜 T 1 𝑜 = 0 ˙
47 45 46 bitrdi φ G dom DProd S 1 𝑜 T G dom DProd S 1 𝑜 T G dom DProd S 1 𝑜 T 1 𝑜 G DProd S 1 𝑜 T Z G DProd S 1 𝑜 T 1 𝑜 G DProd S 1 𝑜 T G DProd S 1 𝑜 T 1 𝑜 = 0 ˙
48 47 baibd φ G dom DProd S 1 𝑜 T G dom DProd S 1 𝑜 T 1 𝑜 G dom DProd S 1 𝑜 T G DProd S 1 𝑜 T Z G DProd S 1 𝑜 T 1 𝑜 G DProd S 1 𝑜 T G DProd S 1 𝑜 T 1 𝑜 = 0 ˙
49 48 ex φ G dom DProd S 1 𝑜 T G dom DProd S 1 𝑜 T 1 𝑜 G dom DProd S 1 𝑜 T G DProd S 1 𝑜 T Z G DProd S 1 𝑜 T 1 𝑜 G DProd S 1 𝑜 T G DProd S 1 𝑜 T 1 𝑜 = 0 ˙
50 22 37 49 mp2and φ G dom DProd S 1 𝑜 T G DProd S 1 𝑜 T Z G DProd S 1 𝑜 T 1 𝑜 G DProd S 1 𝑜 T G DProd S 1 𝑜 T 1 𝑜 = 0 ˙
51 21 oveq2d φ G DProd S 1 𝑜 T = G DProd S
52 7 simprd φ G DProd S = S
53 51 52 eqtrd φ G DProd S 1 𝑜 T = S
54 36 oveq2d φ G DProd S 1 𝑜 T 1 𝑜 = G DProd 1 𝑜 T
55 25 simprd φ G DProd 1 𝑜 T = T
56 54 55 eqtrd φ G DProd S 1 𝑜 T 1 𝑜 = T
57 56 fveq2d φ Z G DProd S 1 𝑜 T 1 𝑜 = Z T
58 53 57 sseq12d φ G DProd S 1 𝑜 T Z G DProd S 1 𝑜 T 1 𝑜 S Z T
59 53 56 ineq12d φ G DProd S 1 𝑜 T G DProd S 1 𝑜 T 1 𝑜 = S T
60 59 eqeq1d φ G DProd S 1 𝑜 T G DProd S 1 𝑜 T 1 𝑜 = 0 ˙ S T = 0 ˙
61 58 60 anbi12d φ G DProd S 1 𝑜 T Z G DProd S 1 𝑜 T 1 𝑜 G DProd S 1 𝑜 T G DProd S 1 𝑜 T 1 𝑜 = 0 ˙ S Z T S T = 0 ˙
62 50 61 bitrd φ G dom DProd S 1 𝑜 T S Z T S T = 0 ˙