| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|
| 2 |
|
eqid |
|
| 3 |
|
eqid |
|
| 4 |
|
subgrcl |
|
| 5 |
4
|
adantl |
|
| 6 |
|
snex |
|
| 7 |
6
|
a1i |
|
| 8 |
|
f1osng |
|
| 9 |
|
f1of |
|
| 10 |
8 9
|
syl |
|
| 11 |
|
simpr |
|
| 12 |
11
|
snssd |
|
| 13 |
10 12
|
fssd |
|
| 14 |
|
simpr1 |
|
| 15 |
|
elsni |
|
| 16 |
14 15
|
syl |
|
| 17 |
|
simpr2 |
|
| 18 |
|
elsni |
|
| 19 |
17 18
|
syl |
|
| 20 |
16 19
|
eqtr4d |
|
| 21 |
|
simpr3 |
|
| 22 |
20 21
|
pm2.21ddne |
|
| 23 |
5
|
adantr |
|
| 24 |
|
eqid |
|
| 25 |
24
|
subgacs |
|
| 26 |
|
acsmre |
|
| 27 |
23 25 26
|
3syl |
|
| 28 |
15
|
adantl |
|
| 29 |
28
|
sneqd |
|
| 30 |
29
|
difeq2d |
|
| 31 |
|
difid |
|
| 32 |
30 31
|
eqtrdi |
|
| 33 |
32
|
imaeq2d |
|
| 34 |
|
ima0 |
|
| 35 |
33 34
|
eqtrdi |
|
| 36 |
35
|
unieqd |
|
| 37 |
|
uni0 |
|
| 38 |
36 37
|
eqtrdi |
|
| 39 |
|
0ss |
|
| 40 |
39
|
a1i |
|
| 41 |
38 40
|
eqsstrd |
|
| 42 |
2
|
0subg |
|
| 43 |
23 42
|
syl |
|
| 44 |
3
|
mrcsscl |
|
| 45 |
27 41 43 44
|
syl3anc |
|
| 46 |
2
|
subg0cl |
|
| 47 |
46
|
ad2antlr |
|
| 48 |
15
|
fveq2d |
|
| 49 |
|
fvsng |
|
| 50 |
48 49
|
sylan9eqr |
|
| 51 |
47 50
|
eleqtrrd |
|
| 52 |
51
|
snssd |
|
| 53 |
45 52
|
sstrd |
|
| 54 |
|
sseqin2 |
|
| 55 |
53 54
|
sylib |
|
| 56 |
55 45
|
eqsstrd |
|
| 57 |
1 2 3 5 7 13 22 56
|
dmdprdd |
|
| 58 |
3
|
dprdspan |
|
| 59 |
57 58
|
syl |
|
| 60 |
|
rnsnopg |
|
| 61 |
60
|
adantr |
|
| 62 |
61
|
unieqd |
|
| 63 |
|
unisng |
|
| 64 |
63
|
adantl |
|
| 65 |
62 64
|
eqtrd |
|
| 66 |
65
|
fveq2d |
|
| 67 |
5 25 26
|
3syl |
|
| 68 |
3
|
mrcid |
|
| 69 |
67 68
|
sylancom |
|
| 70 |
66 69
|
eqtrd |
|
| 71 |
59 70
|
eqtrd |
|
| 72 |
57 71
|
jca |
|