Metamath Proof Explorer


Theorem dprdspan

Description: The direct product is the span of the union of the factors. (Contributed by Mario Carneiro, 25-Apr-2016)

Ref Expression
Hypothesis dprdspan.k K=mrClsSubGrpG
Assertion dprdspan GdomDProdSGDProdS=KranS

Proof

Step Hyp Ref Expression
1 dprdspan.k K=mrClsSubGrpG
2 id GdomDProdSGdomDProdS
3 eqidd GdomDProdSdomS=domS
4 dprdgrp GdomDProdSGGrp
5 eqid BaseG=BaseG
6 5 subgacs GGrpSubGrpGACSBaseG
7 acsmre SubGrpGACSBaseGSubGrpGMooreBaseG
8 4 6 7 3syl GdomDProdSSubGrpGMooreBaseG
9 dprdf GdomDProdSS:domSSubGrpG
10 9 ffnd GdomDProdSSFndomS
11 fniunfv SFndomSkdomSSk=ranS
12 10 11 syl GdomDProdSkdomSSk=ranS
13 simpl GdomDProdSkdomSGdomDProdS
14 eqidd GdomDProdSkdomSdomS=domS
15 simpr GdomDProdSkdomSkdomS
16 13 14 15 dprdub GdomDProdSkdomSSkGDProdS
17 16 ralrimiva GdomDProdSkdomSSkGDProdS
18 iunss kdomSSkGDProdSkdomSSkGDProdS
19 17 18 sylibr GdomDProdSkdomSSkGDProdS
20 12 19 eqsstrrd GdomDProdSranSGDProdS
21 5 dprdssv GDProdSBaseG
22 20 21 sstrdi GdomDProdSranSBaseG
23 1 mrccl SubGrpGMooreBaseGranSBaseGKranSSubGrpG
24 8 22 23 syl2anc GdomDProdSKranSSubGrpG
25 eqimss kdomSSk=ranSkdomSSkranS
26 12 25 syl GdomDProdSkdomSSkranS
27 iunss kdomSSkranSkdomSSkranS
28 26 27 sylib GdomDProdSkdomSSkranS
29 28 r19.21bi GdomDProdSkdomSSkranS
30 8 1 22 mrcssidd GdomDProdSranSKranS
31 30 adantr GdomDProdSkdomSranSKranS
32 29 31 sstrd GdomDProdSkdomSSkKranS
33 2 3 24 32 dprdlub GdomDProdSGDProdSKranS
34 dprdsubg GdomDProdSGDProdSSubGrpG
35 1 mrcsscl SubGrpGMooreBaseGranSGDProdSGDProdSSubGrpGKranSGDProdS
36 8 20 34 35 syl3anc GdomDProdSKranSGDProdS
37 33 36 eqssd GdomDProdSGDProdS=KranS