Description: The direct product is the span of the union of the factors. (Contributed by Mario Carneiro, 25-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | dprdspan.k | |
|
Assertion | dprdspan | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dprdspan.k | |
|
2 | id | |
|
3 | eqidd | |
|
4 | dprdgrp | |
|
5 | eqid | |
|
6 | 5 | subgacs | |
7 | acsmre | |
|
8 | 4 6 7 | 3syl | |
9 | dprdf | |
|
10 | 9 | ffnd | |
11 | fniunfv | |
|
12 | 10 11 | syl | |
13 | simpl | |
|
14 | eqidd | |
|
15 | simpr | |
|
16 | 13 14 15 | dprdub | |
17 | 16 | ralrimiva | |
18 | iunss | |
|
19 | 17 18 | sylibr | |
20 | 12 19 | eqsstrrd | |
21 | 5 | dprdssv | |
22 | 20 21 | sstrdi | |
23 | 1 | mrccl | |
24 | 8 22 23 | syl2anc | |
25 | eqimss | |
|
26 | 12 25 | syl | |
27 | iunss | |
|
28 | 26 27 | sylib | |
29 | 28 | r19.21bi | |
30 | 8 1 22 | mrcssidd | |
31 | 30 | adantr | |
32 | 29 31 | sstrd | |
33 | 2 3 24 32 | dprdlub | |
34 | dprdsubg | |
|
35 | 1 | mrcsscl | |
36 | 8 20 34 35 | syl3anc | |
37 | 33 36 | eqssd | |