| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( Cntz ` G ) = ( Cntz ` G ) |
| 2 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 3 |
|
eqid |
|- ( mrCls ` ( SubGrp ` G ) ) = ( mrCls ` ( SubGrp ` G ) ) |
| 4 |
|
subgrcl |
|- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
| 5 |
4
|
adantl |
|- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> G e. Grp ) |
| 6 |
|
snex |
|- { A } e. _V |
| 7 |
6
|
a1i |
|- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> { A } e. _V ) |
| 8 |
|
f1osng |
|- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> { <. A , S >. } : { A } -1-1-onto-> { S } ) |
| 9 |
|
f1of |
|- ( { <. A , S >. } : { A } -1-1-onto-> { S } -> { <. A , S >. } : { A } --> { S } ) |
| 10 |
8 9
|
syl |
|- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> { <. A , S >. } : { A } --> { S } ) |
| 11 |
|
simpr |
|- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> S e. ( SubGrp ` G ) ) |
| 12 |
11
|
snssd |
|- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> { S } C_ ( SubGrp ` G ) ) |
| 13 |
10 12
|
fssd |
|- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> { <. A , S >. } : { A } --> ( SubGrp ` G ) ) |
| 14 |
|
simpr1 |
|- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ ( x e. { A } /\ y e. { A } /\ x =/= y ) ) -> x e. { A } ) |
| 15 |
|
elsni |
|- ( x e. { A } -> x = A ) |
| 16 |
14 15
|
syl |
|- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ ( x e. { A } /\ y e. { A } /\ x =/= y ) ) -> x = A ) |
| 17 |
|
simpr2 |
|- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ ( x e. { A } /\ y e. { A } /\ x =/= y ) ) -> y e. { A } ) |
| 18 |
|
elsni |
|- ( y e. { A } -> y = A ) |
| 19 |
17 18
|
syl |
|- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ ( x e. { A } /\ y e. { A } /\ x =/= y ) ) -> y = A ) |
| 20 |
16 19
|
eqtr4d |
|- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ ( x e. { A } /\ y e. { A } /\ x =/= y ) ) -> x = y ) |
| 21 |
|
simpr3 |
|- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ ( x e. { A } /\ y e. { A } /\ x =/= y ) ) -> x =/= y ) |
| 22 |
20 21
|
pm2.21ddne |
|- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ ( x e. { A } /\ y e. { A } /\ x =/= y ) ) -> ( { <. A , S >. } ` x ) C_ ( ( Cntz ` G ) ` ( { <. A , S >. } ` y ) ) ) |
| 23 |
5
|
adantr |
|- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> G e. Grp ) |
| 24 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 25 |
24
|
subgacs |
|- ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) ) |
| 26 |
|
acsmre |
|- ( ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
| 27 |
23 25 26
|
3syl |
|- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
| 28 |
15
|
adantl |
|- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> x = A ) |
| 29 |
28
|
sneqd |
|- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> { x } = { A } ) |
| 30 |
29
|
difeq2d |
|- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> ( { A } \ { x } ) = ( { A } \ { A } ) ) |
| 31 |
|
difid |
|- ( { A } \ { A } ) = (/) |
| 32 |
30 31
|
eqtrdi |
|- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> ( { A } \ { x } ) = (/) ) |
| 33 |
32
|
imaeq2d |
|- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> ( { <. A , S >. } " ( { A } \ { x } ) ) = ( { <. A , S >. } " (/) ) ) |
| 34 |
|
ima0 |
|- ( { <. A , S >. } " (/) ) = (/) |
| 35 |
33 34
|
eqtrdi |
|- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> ( { <. A , S >. } " ( { A } \ { x } ) ) = (/) ) |
| 36 |
35
|
unieqd |
|- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> U. ( { <. A , S >. } " ( { A } \ { x } ) ) = U. (/) ) |
| 37 |
|
uni0 |
|- U. (/) = (/) |
| 38 |
36 37
|
eqtrdi |
|- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> U. ( { <. A , S >. } " ( { A } \ { x } ) ) = (/) ) |
| 39 |
|
0ss |
|- (/) C_ { ( 0g ` G ) } |
| 40 |
39
|
a1i |
|- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> (/) C_ { ( 0g ` G ) } ) |
| 41 |
38 40
|
eqsstrd |
|- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> U. ( { <. A , S >. } " ( { A } \ { x } ) ) C_ { ( 0g ` G ) } ) |
| 42 |
2
|
0subg |
|- ( G e. Grp -> { ( 0g ` G ) } e. ( SubGrp ` G ) ) |
| 43 |
23 42
|
syl |
|- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> { ( 0g ` G ) } e. ( SubGrp ` G ) ) |
| 44 |
3
|
mrcsscl |
|- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ( { <. A , S >. } " ( { A } \ { x } ) ) C_ { ( 0g ` G ) } /\ { ( 0g ` G ) } e. ( SubGrp ` G ) ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( { <. A , S >. } " ( { A } \ { x } ) ) ) C_ { ( 0g ` G ) } ) |
| 45 |
27 41 43 44
|
syl3anc |
|- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( { <. A , S >. } " ( { A } \ { x } ) ) ) C_ { ( 0g ` G ) } ) |
| 46 |
2
|
subg0cl |
|- ( S e. ( SubGrp ` G ) -> ( 0g ` G ) e. S ) |
| 47 |
46
|
ad2antlr |
|- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> ( 0g ` G ) e. S ) |
| 48 |
15
|
fveq2d |
|- ( x e. { A } -> ( { <. A , S >. } ` x ) = ( { <. A , S >. } ` A ) ) |
| 49 |
|
fvsng |
|- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> ( { <. A , S >. } ` A ) = S ) |
| 50 |
48 49
|
sylan9eqr |
|- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> ( { <. A , S >. } ` x ) = S ) |
| 51 |
47 50
|
eleqtrrd |
|- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> ( 0g ` G ) e. ( { <. A , S >. } ` x ) ) |
| 52 |
51
|
snssd |
|- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> { ( 0g ` G ) } C_ ( { <. A , S >. } ` x ) ) |
| 53 |
45 52
|
sstrd |
|- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( { <. A , S >. } " ( { A } \ { x } ) ) ) C_ ( { <. A , S >. } ` x ) ) |
| 54 |
|
sseqin2 |
|- ( ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( { <. A , S >. } " ( { A } \ { x } ) ) ) C_ ( { <. A , S >. } ` x ) <-> ( ( { <. A , S >. } ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( { <. A , S >. } " ( { A } \ { x } ) ) ) ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( { <. A , S >. } " ( { A } \ { x } ) ) ) ) |
| 55 |
53 54
|
sylib |
|- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> ( ( { <. A , S >. } ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( { <. A , S >. } " ( { A } \ { x } ) ) ) ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( { <. A , S >. } " ( { A } \ { x } ) ) ) ) |
| 56 |
55 45
|
eqsstrd |
|- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> ( ( { <. A , S >. } ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( { <. A , S >. } " ( { A } \ { x } ) ) ) ) C_ { ( 0g ` G ) } ) |
| 57 |
1 2 3 5 7 13 22 56
|
dmdprdd |
|- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> G dom DProd { <. A , S >. } ) |
| 58 |
3
|
dprdspan |
|- ( G dom DProd { <. A , S >. } -> ( G DProd { <. A , S >. } ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran { <. A , S >. } ) ) |
| 59 |
57 58
|
syl |
|- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> ( G DProd { <. A , S >. } ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran { <. A , S >. } ) ) |
| 60 |
|
rnsnopg |
|- ( A e. V -> ran { <. A , S >. } = { S } ) |
| 61 |
60
|
adantr |
|- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> ran { <. A , S >. } = { S } ) |
| 62 |
61
|
unieqd |
|- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> U. ran { <. A , S >. } = U. { S } ) |
| 63 |
|
unisng |
|- ( S e. ( SubGrp ` G ) -> U. { S } = S ) |
| 64 |
63
|
adantl |
|- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> U. { S } = S ) |
| 65 |
62 64
|
eqtrd |
|- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> U. ran { <. A , S >. } = S ) |
| 66 |
65
|
fveq2d |
|- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran { <. A , S >. } ) = ( ( mrCls ` ( SubGrp ` G ) ) ` S ) ) |
| 67 |
5 25 26
|
3syl |
|- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
| 68 |
3
|
mrcid |
|- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ S e. ( SubGrp ` G ) ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` S ) = S ) |
| 69 |
67 68
|
sylancom |
|- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` S ) = S ) |
| 70 |
66 69
|
eqtrd |
|- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran { <. A , S >. } ) = S ) |
| 71 |
59 70
|
eqtrd |
|- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> ( G DProd { <. A , S >. } ) = S ) |
| 72 |
57 71
|
jca |
|- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> ( G dom DProd { <. A , S >. } /\ ( G DProd { <. A , S >. } ) = S ) ) |