| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmdprd.z |
|- Z = ( Cntz ` G ) |
| 2 |
|
dmdprd.0 |
|- .0. = ( 0g ` G ) |
| 3 |
|
dmdprd.k |
|- K = ( mrCls ` ( SubGrp ` G ) ) |
| 4 |
|
dmdprdd.1 |
|- ( ph -> G e. Grp ) |
| 5 |
|
dmdprdd.2 |
|- ( ph -> I e. V ) |
| 6 |
|
dmdprdd.3 |
|- ( ph -> S : I --> ( SubGrp ` G ) ) |
| 7 |
|
dmdprdd.4 |
|- ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> ( S ` x ) C_ ( Z ` ( S ` y ) ) ) |
| 8 |
|
dmdprdd.5 |
|- ( ( ph /\ x e. I ) -> ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) C_ { .0. } ) |
| 9 |
|
eldifsn |
|- ( y e. ( I \ { x } ) <-> ( y e. I /\ y =/= x ) ) |
| 10 |
|
necom |
|- ( y =/= x <-> x =/= y ) |
| 11 |
10
|
anbi2i |
|- ( ( y e. I /\ y =/= x ) <-> ( y e. I /\ x =/= y ) ) |
| 12 |
9 11
|
bitri |
|- ( y e. ( I \ { x } ) <-> ( y e. I /\ x =/= y ) ) |
| 13 |
7
|
3exp2 |
|- ( ph -> ( x e. I -> ( y e. I -> ( x =/= y -> ( S ` x ) C_ ( Z ` ( S ` y ) ) ) ) ) ) |
| 14 |
13
|
imp4b |
|- ( ( ph /\ x e. I ) -> ( ( y e. I /\ x =/= y ) -> ( S ` x ) C_ ( Z ` ( S ` y ) ) ) ) |
| 15 |
12 14
|
biimtrid |
|- ( ( ph /\ x e. I ) -> ( y e. ( I \ { x } ) -> ( S ` x ) C_ ( Z ` ( S ` y ) ) ) ) |
| 16 |
15
|
ralrimiv |
|- ( ( ph /\ x e. I ) -> A. y e. ( I \ { x } ) ( S ` x ) C_ ( Z ` ( S ` y ) ) ) |
| 17 |
6
|
ffvelcdmda |
|- ( ( ph /\ x e. I ) -> ( S ` x ) e. ( SubGrp ` G ) ) |
| 18 |
2
|
subg0cl |
|- ( ( S ` x ) e. ( SubGrp ` G ) -> .0. e. ( S ` x ) ) |
| 19 |
17 18
|
syl |
|- ( ( ph /\ x e. I ) -> .0. e. ( S ` x ) ) |
| 20 |
4
|
adantr |
|- ( ( ph /\ x e. I ) -> G e. Grp ) |
| 21 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 22 |
21
|
subgacs |
|- ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) ) |
| 23 |
|
acsmre |
|- ( ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
| 24 |
20 22 23
|
3syl |
|- ( ( ph /\ x e. I ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
| 25 |
|
imassrn |
|- ( S " ( I \ { x } ) ) C_ ran S |
| 26 |
6
|
frnd |
|- ( ph -> ran S C_ ( SubGrp ` G ) ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ x e. I ) -> ran S C_ ( SubGrp ` G ) ) |
| 28 |
25 27
|
sstrid |
|- ( ( ph /\ x e. I ) -> ( S " ( I \ { x } ) ) C_ ( SubGrp ` G ) ) |
| 29 |
|
mresspw |
|- ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) -> ( SubGrp ` G ) C_ ~P ( Base ` G ) ) |
| 30 |
24 29
|
syl |
|- ( ( ph /\ x e. I ) -> ( SubGrp ` G ) C_ ~P ( Base ` G ) ) |
| 31 |
28 30
|
sstrd |
|- ( ( ph /\ x e. I ) -> ( S " ( I \ { x } ) ) C_ ~P ( Base ` G ) ) |
| 32 |
|
sspwuni |
|- ( ( S " ( I \ { x } ) ) C_ ~P ( Base ` G ) <-> U. ( S " ( I \ { x } ) ) C_ ( Base ` G ) ) |
| 33 |
31 32
|
sylib |
|- ( ( ph /\ x e. I ) -> U. ( S " ( I \ { x } ) ) C_ ( Base ` G ) ) |
| 34 |
3
|
mrccl |
|- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ( S " ( I \ { x } ) ) C_ ( Base ` G ) ) -> ( K ` U. ( S " ( I \ { x } ) ) ) e. ( SubGrp ` G ) ) |
| 35 |
24 33 34
|
syl2anc |
|- ( ( ph /\ x e. I ) -> ( K ` U. ( S " ( I \ { x } ) ) ) e. ( SubGrp ` G ) ) |
| 36 |
2
|
subg0cl |
|- ( ( K ` U. ( S " ( I \ { x } ) ) ) e. ( SubGrp ` G ) -> .0. e. ( K ` U. ( S " ( I \ { x } ) ) ) ) |
| 37 |
35 36
|
syl |
|- ( ( ph /\ x e. I ) -> .0. e. ( K ` U. ( S " ( I \ { x } ) ) ) ) |
| 38 |
19 37
|
elind |
|- ( ( ph /\ x e. I ) -> .0. e. ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) ) |
| 39 |
38
|
snssd |
|- ( ( ph /\ x e. I ) -> { .0. } C_ ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) ) |
| 40 |
8 39
|
eqssd |
|- ( ( ph /\ x e. I ) -> ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) = { .0. } ) |
| 41 |
16 40
|
jca |
|- ( ( ph /\ x e. I ) -> ( A. y e. ( I \ { x } ) ( S ` x ) C_ ( Z ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) = { .0. } ) ) |
| 42 |
41
|
ralrimiva |
|- ( ph -> A. x e. I ( A. y e. ( I \ { x } ) ( S ` x ) C_ ( Z ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) = { .0. } ) ) |
| 43 |
6
|
fdmd |
|- ( ph -> dom S = I ) |
| 44 |
1 2 3
|
dmdprd |
|- ( ( I e. V /\ dom S = I ) -> ( G dom DProd S <-> ( G e. Grp /\ S : I --> ( SubGrp ` G ) /\ A. x e. I ( A. y e. ( I \ { x } ) ( S ` x ) C_ ( Z ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) = { .0. } ) ) ) ) |
| 45 |
5 43 44
|
syl2anc |
|- ( ph -> ( G dom DProd S <-> ( G e. Grp /\ S : I --> ( SubGrp ` G ) /\ A. x e. I ( A. y e. ( I \ { x } ) ( S ` x ) C_ ( Z ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) = { .0. } ) ) ) ) |
| 46 |
4 6 42 45
|
mpbir3and |
|- ( ph -> G dom DProd S ) |