Metamath Proof Explorer


Theorem dprdpr

Description: A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses dmdprdpr.z Z = Cntz G
dmdprdpr.0 0 ˙ = 0 G
dmdprdpr.s φ S SubGrp G
dmdprdpr.t φ T SubGrp G
dprdpr.s ˙ = LSSum G
dprdpr.1 φ S Z T
dprdpr.2 φ S T = 0 ˙
Assertion dprdpr φ G DProd S 1 𝑜 T = S ˙ T

Proof

Step Hyp Ref Expression
1 dmdprdpr.z Z = Cntz G
2 dmdprdpr.0 0 ˙ = 0 G
3 dmdprdpr.s φ S SubGrp G
4 dmdprdpr.t φ T SubGrp G
5 dprdpr.s ˙ = LSSum G
6 dprdpr.1 φ S Z T
7 dprdpr.2 φ S T = 0 ˙
8 xpscf S 1 𝑜 T : 2 𝑜 SubGrp G S SubGrp G T SubGrp G
9 3 4 8 sylanbrc φ S 1 𝑜 T : 2 𝑜 SubGrp G
10 1n0 1 𝑜
11 10 necomi 1 𝑜
12 disjsn2 1 𝑜 1 𝑜 =
13 11 12 mp1i φ 1 𝑜 =
14 df2o3 2 𝑜 = 1 𝑜
15 df-pr 1 𝑜 = 1 𝑜
16 14 15 eqtri 2 𝑜 = 1 𝑜
17 16 a1i φ 2 𝑜 = 1 𝑜
18 1 2 3 4 dmdprdpr φ G dom DProd S 1 𝑜 T S Z T S T = 0 ˙
19 6 7 18 mpbir2and φ G dom DProd S 1 𝑜 T
20 9 13 17 5 19 dprdsplit φ G DProd S 1 𝑜 T = G DProd S 1 𝑜 T ˙ G DProd S 1 𝑜 T 1 𝑜
21 9 ffnd φ S 1 𝑜 T Fn 2 𝑜
22 0ex V
23 22 prid1 1 𝑜
24 23 14 eleqtrri 2 𝑜
25 fnressn S 1 𝑜 T Fn 2 𝑜 2 𝑜 S 1 𝑜 T = S 1 𝑜 T
26 21 24 25 sylancl φ S 1 𝑜 T = S 1 𝑜 T
27 fvpr0o S SubGrp G S 1 𝑜 T = S
28 3 27 syl φ S 1 𝑜 T = S
29 28 opeq2d φ S 1 𝑜 T = S
30 29 sneqd φ S 1 𝑜 T = S
31 26 30 eqtrd φ S 1 𝑜 T = S
32 31 oveq2d φ G DProd S 1 𝑜 T = G DProd S
33 dprdsn V S SubGrp G G dom DProd S G DProd S = S
34 22 3 33 sylancr φ G dom DProd S G DProd S = S
35 34 simprd φ G DProd S = S
36 32 35 eqtrd φ G DProd S 1 𝑜 T = S
37 1oex 1 𝑜 V
38 37 prid2 1 𝑜 1 𝑜
39 38 14 eleqtrri 1 𝑜 2 𝑜
40 fnressn S 1 𝑜 T Fn 2 𝑜 1 𝑜 2 𝑜 S 1 𝑜 T 1 𝑜 = 1 𝑜 S 1 𝑜 T 1 𝑜
41 21 39 40 sylancl φ S 1 𝑜 T 1 𝑜 = 1 𝑜 S 1 𝑜 T 1 𝑜
42 fvpr1o T SubGrp G S 1 𝑜 T 1 𝑜 = T
43 4 42 syl φ S 1 𝑜 T 1 𝑜 = T
44 43 opeq2d φ 1 𝑜 S 1 𝑜 T 1 𝑜 = 1 𝑜 T
45 44 sneqd φ 1 𝑜 S 1 𝑜 T 1 𝑜 = 1 𝑜 T
46 41 45 eqtrd φ S 1 𝑜 T 1 𝑜 = 1 𝑜 T
47 46 oveq2d φ G DProd S 1 𝑜 T 1 𝑜 = G DProd 1 𝑜 T
48 1on 1 𝑜 On
49 dprdsn 1 𝑜 On T SubGrp G G dom DProd 1 𝑜 T G DProd 1 𝑜 T = T
50 48 4 49 sylancr φ G dom DProd 1 𝑜 T G DProd 1 𝑜 T = T
51 50 simprd φ G DProd 1 𝑜 T = T
52 47 51 eqtrd φ G DProd S 1 𝑜 T 1 𝑜 = T
53 36 52 oveq12d φ G DProd S 1 𝑜 T ˙ G DProd S 1 𝑜 T 1 𝑜 = S ˙ T
54 20 53 eqtrd φ G DProd S 1 𝑜 T = S ˙ T