| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmdprdpr.z |
|- Z = ( Cntz ` G ) |
| 2 |
|
dmdprdpr.0 |
|- .0. = ( 0g ` G ) |
| 3 |
|
dmdprdpr.s |
|- ( ph -> S e. ( SubGrp ` G ) ) |
| 4 |
|
dmdprdpr.t |
|- ( ph -> T e. ( SubGrp ` G ) ) |
| 5 |
|
dprdpr.s |
|- .(+) = ( LSSum ` G ) |
| 6 |
|
dprdpr.1 |
|- ( ph -> S C_ ( Z ` T ) ) |
| 7 |
|
dprdpr.2 |
|- ( ph -> ( S i^i T ) = { .0. } ) |
| 8 |
|
xpscf |
|- ( { <. (/) , S >. , <. 1o , T >. } : 2o --> ( SubGrp ` G ) <-> ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) ) ) |
| 9 |
3 4 8
|
sylanbrc |
|- ( ph -> { <. (/) , S >. , <. 1o , T >. } : 2o --> ( SubGrp ` G ) ) |
| 10 |
|
1n0 |
|- 1o =/= (/) |
| 11 |
10
|
necomi |
|- (/) =/= 1o |
| 12 |
|
disjsn2 |
|- ( (/) =/= 1o -> ( { (/) } i^i { 1o } ) = (/) ) |
| 13 |
11 12
|
mp1i |
|- ( ph -> ( { (/) } i^i { 1o } ) = (/) ) |
| 14 |
|
df2o3 |
|- 2o = { (/) , 1o } |
| 15 |
|
df-pr |
|- { (/) , 1o } = ( { (/) } u. { 1o } ) |
| 16 |
14 15
|
eqtri |
|- 2o = ( { (/) } u. { 1o } ) |
| 17 |
16
|
a1i |
|- ( ph -> 2o = ( { (/) } u. { 1o } ) ) |
| 18 |
1 2 3 4
|
dmdprdpr |
|- ( ph -> ( G dom DProd { <. (/) , S >. , <. 1o , T >. } <-> ( S C_ ( Z ` T ) /\ ( S i^i T ) = { .0. } ) ) ) |
| 19 |
6 7 18
|
mpbir2and |
|- ( ph -> G dom DProd { <. (/) , S >. , <. 1o , T >. } ) |
| 20 |
9 13 17 5 19
|
dprdsplit |
|- ( ph -> ( G DProd { <. (/) , S >. , <. 1o , T >. } ) = ( ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) ) .(+) ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) ) ) |
| 21 |
9
|
ffnd |
|- ( ph -> { <. (/) , S >. , <. 1o , T >. } Fn 2o ) |
| 22 |
|
0ex |
|- (/) e. _V |
| 23 |
22
|
prid1 |
|- (/) e. { (/) , 1o } |
| 24 |
23 14
|
eleqtrri |
|- (/) e. 2o |
| 25 |
|
fnressn |
|- ( ( { <. (/) , S >. , <. 1o , T >. } Fn 2o /\ (/) e. 2o ) -> ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) = { <. (/) , ( { <. (/) , S >. , <. 1o , T >. } ` (/) ) >. } ) |
| 26 |
21 24 25
|
sylancl |
|- ( ph -> ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) = { <. (/) , ( { <. (/) , S >. , <. 1o , T >. } ` (/) ) >. } ) |
| 27 |
|
fvpr0o |
|- ( S e. ( SubGrp ` G ) -> ( { <. (/) , S >. , <. 1o , T >. } ` (/) ) = S ) |
| 28 |
3 27
|
syl |
|- ( ph -> ( { <. (/) , S >. , <. 1o , T >. } ` (/) ) = S ) |
| 29 |
28
|
opeq2d |
|- ( ph -> <. (/) , ( { <. (/) , S >. , <. 1o , T >. } ` (/) ) >. = <. (/) , S >. ) |
| 30 |
29
|
sneqd |
|- ( ph -> { <. (/) , ( { <. (/) , S >. , <. 1o , T >. } ` (/) ) >. } = { <. (/) , S >. } ) |
| 31 |
26 30
|
eqtrd |
|- ( ph -> ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) = { <. (/) , S >. } ) |
| 32 |
31
|
oveq2d |
|- ( ph -> ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) ) = ( G DProd { <. (/) , S >. } ) ) |
| 33 |
|
dprdsn |
|- ( ( (/) e. _V /\ S e. ( SubGrp ` G ) ) -> ( G dom DProd { <. (/) , S >. } /\ ( G DProd { <. (/) , S >. } ) = S ) ) |
| 34 |
22 3 33
|
sylancr |
|- ( ph -> ( G dom DProd { <. (/) , S >. } /\ ( G DProd { <. (/) , S >. } ) = S ) ) |
| 35 |
34
|
simprd |
|- ( ph -> ( G DProd { <. (/) , S >. } ) = S ) |
| 36 |
32 35
|
eqtrd |
|- ( ph -> ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) ) = S ) |
| 37 |
|
1oex |
|- 1o e. _V |
| 38 |
37
|
prid2 |
|- 1o e. { (/) , 1o } |
| 39 |
38 14
|
eleqtrri |
|- 1o e. 2o |
| 40 |
|
fnressn |
|- ( ( { <. (/) , S >. , <. 1o , T >. } Fn 2o /\ 1o e. 2o ) -> ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) = { <. 1o , ( { <. (/) , S >. , <. 1o , T >. } ` 1o ) >. } ) |
| 41 |
21 39 40
|
sylancl |
|- ( ph -> ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) = { <. 1o , ( { <. (/) , S >. , <. 1o , T >. } ` 1o ) >. } ) |
| 42 |
|
fvpr1o |
|- ( T e. ( SubGrp ` G ) -> ( { <. (/) , S >. , <. 1o , T >. } ` 1o ) = T ) |
| 43 |
4 42
|
syl |
|- ( ph -> ( { <. (/) , S >. , <. 1o , T >. } ` 1o ) = T ) |
| 44 |
43
|
opeq2d |
|- ( ph -> <. 1o , ( { <. (/) , S >. , <. 1o , T >. } ` 1o ) >. = <. 1o , T >. ) |
| 45 |
44
|
sneqd |
|- ( ph -> { <. 1o , ( { <. (/) , S >. , <. 1o , T >. } ` 1o ) >. } = { <. 1o , T >. } ) |
| 46 |
41 45
|
eqtrd |
|- ( ph -> ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) = { <. 1o , T >. } ) |
| 47 |
46
|
oveq2d |
|- ( ph -> ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) = ( G DProd { <. 1o , T >. } ) ) |
| 48 |
|
1on |
|- 1o e. On |
| 49 |
|
dprdsn |
|- ( ( 1o e. On /\ T e. ( SubGrp ` G ) ) -> ( G dom DProd { <. 1o , T >. } /\ ( G DProd { <. 1o , T >. } ) = T ) ) |
| 50 |
48 4 49
|
sylancr |
|- ( ph -> ( G dom DProd { <. 1o , T >. } /\ ( G DProd { <. 1o , T >. } ) = T ) ) |
| 51 |
50
|
simprd |
|- ( ph -> ( G DProd { <. 1o , T >. } ) = T ) |
| 52 |
47 51
|
eqtrd |
|- ( ph -> ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) = T ) |
| 53 |
36 52
|
oveq12d |
|- ( ph -> ( ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) ) .(+) ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) ) = ( S .(+) T ) ) |
| 54 |
20 53
|
eqtrd |
|- ( ph -> ( G DProd { <. (/) , S >. , <. 1o , T >. } ) = ( S .(+) T ) ) |