Metamath Proof Explorer


Theorem dpjlem

Description: Lemma for theorems about direct product projection. (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses dpjfval.1
|- ( ph -> G dom DProd S )
dpjfval.2
|- ( ph -> dom S = I )
dpjlem.3
|- ( ph -> X e. I )
Assertion dpjlem
|- ( ph -> ( G DProd ( S |` { X } ) ) = ( S ` X ) )

Proof

Step Hyp Ref Expression
1 dpjfval.1
 |-  ( ph -> G dom DProd S )
2 dpjfval.2
 |-  ( ph -> dom S = I )
3 dpjlem.3
 |-  ( ph -> X e. I )
4 1 2 dprdf2
 |-  ( ph -> S : I --> ( SubGrp ` G ) )
5 4 ffnd
 |-  ( ph -> S Fn I )
6 fnressn
 |-  ( ( S Fn I /\ X e. I ) -> ( S |` { X } ) = { <. X , ( S ` X ) >. } )
7 5 3 6 syl2anc
 |-  ( ph -> ( S |` { X } ) = { <. X , ( S ` X ) >. } )
8 7 oveq2d
 |-  ( ph -> ( G DProd ( S |` { X } ) ) = ( G DProd { <. X , ( S ` X ) >. } ) )
9 4 3 ffvelrnd
 |-  ( ph -> ( S ` X ) e. ( SubGrp ` G ) )
10 dprdsn
 |-  ( ( X e. I /\ ( S ` X ) e. ( SubGrp ` G ) ) -> ( G dom DProd { <. X , ( S ` X ) >. } /\ ( G DProd { <. X , ( S ` X ) >. } ) = ( S ` X ) ) )
11 3 9 10 syl2anc
 |-  ( ph -> ( G dom DProd { <. X , ( S ` X ) >. } /\ ( G DProd { <. X , ( S ` X ) >. } ) = ( S ` X ) ) )
12 11 simprd
 |-  ( ph -> ( G DProd { <. X , ( S ` X ) >. } ) = ( S ` X ) )
13 8 12 eqtrd
 |-  ( ph -> ( G DProd ( S |` { X } ) ) = ( S ` X ) )