Step |
Hyp |
Ref |
Expression |
1 |
|
dpjfval.1 |
|- ( ph -> G dom DProd S ) |
2 |
|
dpjfval.2 |
|- ( ph -> dom S = I ) |
3 |
|
dpjlem.3 |
|- ( ph -> X e. I ) |
4 |
|
dpjlsm.s |
|- .(+) = ( LSSum ` G ) |
5 |
1 2
|
dprdf2 |
|- ( ph -> S : I --> ( SubGrp ` G ) ) |
6 |
|
disjdif |
|- ( { X } i^i ( I \ { X } ) ) = (/) |
7 |
6
|
a1i |
|- ( ph -> ( { X } i^i ( I \ { X } ) ) = (/) ) |
8 |
|
undif2 |
|- ( { X } u. ( I \ { X } ) ) = ( { X } u. I ) |
9 |
3
|
snssd |
|- ( ph -> { X } C_ I ) |
10 |
|
ssequn1 |
|- ( { X } C_ I <-> ( { X } u. I ) = I ) |
11 |
9 10
|
sylib |
|- ( ph -> ( { X } u. I ) = I ) |
12 |
8 11
|
eqtr2id |
|- ( ph -> I = ( { X } u. ( I \ { X } ) ) ) |
13 |
5 7 12 4 1
|
dprdsplit |
|- ( ph -> ( G DProd S ) = ( ( G DProd ( S |` { X } ) ) .(+) ( G DProd ( S |` ( I \ { X } ) ) ) ) ) |
14 |
1 2 3
|
dpjlem |
|- ( ph -> ( G DProd ( S |` { X } ) ) = ( S ` X ) ) |
15 |
14
|
oveq1d |
|- ( ph -> ( ( G DProd ( S |` { X } ) ) .(+) ( G DProd ( S |` ( I \ { X } ) ) ) ) = ( ( S ` X ) .(+) ( G DProd ( S |` ( I \ { X } ) ) ) ) ) |
16 |
13 15
|
eqtrd |
|- ( ph -> ( G DProd S ) = ( ( S ` X ) .(+) ( G DProd ( S |` ( I \ { X } ) ) ) ) ) |