Metamath Proof Explorer


Theorem dpjval

Description: Value of the direct product projection (defined in terms of binary projection). (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses dpjfval.1
|- ( ph -> G dom DProd S )
dpjfval.2
|- ( ph -> dom S = I )
dpjfval.p
|- P = ( G dProj S )
dpjfval.q
|- Q = ( proj1 ` G )
dpjval.3
|- ( ph -> X e. I )
Assertion dpjval
|- ( ph -> ( P ` X ) = ( ( S ` X ) Q ( G DProd ( S |` ( I \ { X } ) ) ) ) )

Proof

Step Hyp Ref Expression
1 dpjfval.1
 |-  ( ph -> G dom DProd S )
2 dpjfval.2
 |-  ( ph -> dom S = I )
3 dpjfval.p
 |-  P = ( G dProj S )
4 dpjfval.q
 |-  Q = ( proj1 ` G )
5 dpjval.3
 |-  ( ph -> X e. I )
6 1 2 3 4 dpjfval
 |-  ( ph -> P = ( x e. I |-> ( ( S ` x ) Q ( G DProd ( S |` ( I \ { x } ) ) ) ) ) )
7 simpr
 |-  ( ( ph /\ x = X ) -> x = X )
8 7 fveq2d
 |-  ( ( ph /\ x = X ) -> ( S ` x ) = ( S ` X ) )
9 7 sneqd
 |-  ( ( ph /\ x = X ) -> { x } = { X } )
10 9 difeq2d
 |-  ( ( ph /\ x = X ) -> ( I \ { x } ) = ( I \ { X } ) )
11 10 reseq2d
 |-  ( ( ph /\ x = X ) -> ( S |` ( I \ { x } ) ) = ( S |` ( I \ { X } ) ) )
12 11 oveq2d
 |-  ( ( ph /\ x = X ) -> ( G DProd ( S |` ( I \ { x } ) ) ) = ( G DProd ( S |` ( I \ { X } ) ) ) )
13 8 12 oveq12d
 |-  ( ( ph /\ x = X ) -> ( ( S ` x ) Q ( G DProd ( S |` ( I \ { x } ) ) ) ) = ( ( S ` X ) Q ( G DProd ( S |` ( I \ { X } ) ) ) ) )
14 ovexd
 |-  ( ph -> ( ( S ` X ) Q ( G DProd ( S |` ( I \ { X } ) ) ) ) e. _V )
15 6 13 5 14 fvmptd
 |-  ( ph -> ( P ` X ) = ( ( S ` X ) Q ( G DProd ( S |` ( I \ { X } ) ) ) ) )