Metamath Proof Explorer


Theorem dpjeq

Description: Decompose a group sum into projections. (Contributed by Mario Carneiro, 26-Apr-2016) (Revised by AV, 14-Jul-2019)

Ref Expression
Hypotheses dpjfval.1 ( 𝜑𝐺 dom DProd 𝑆 )
dpjfval.2 ( 𝜑 → dom 𝑆 = 𝐼 )
dpjfval.p 𝑃 = ( 𝐺 dProj 𝑆 )
dpjidcl.3 ( 𝜑𝐴 ∈ ( 𝐺 DProd 𝑆 ) )
dpjidcl.0 0 = ( 0g𝐺 )
dpjidcl.w 𝑊 = { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp 0 }
dpjeq.c ( 𝜑 → ( 𝑥𝐼𝐶 ) ∈ 𝑊 )
Assertion dpjeq ( 𝜑 → ( 𝐴 = ( 𝐺 Σg ( 𝑥𝐼𝐶 ) ) ↔ ∀ 𝑥𝐼 ( ( 𝑃𝑥 ) ‘ 𝐴 ) = 𝐶 ) )

Proof

Step Hyp Ref Expression
1 dpjfval.1 ( 𝜑𝐺 dom DProd 𝑆 )
2 dpjfval.2 ( 𝜑 → dom 𝑆 = 𝐼 )
3 dpjfval.p 𝑃 = ( 𝐺 dProj 𝑆 )
4 dpjidcl.3 ( 𝜑𝐴 ∈ ( 𝐺 DProd 𝑆 ) )
5 dpjidcl.0 0 = ( 0g𝐺 )
6 dpjidcl.w 𝑊 = { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp 0 }
7 dpjeq.c ( 𝜑 → ( 𝑥𝐼𝐶 ) ∈ 𝑊 )
8 1 2 3 4 5 6 dpjidcl ( 𝜑 → ( ( 𝑥𝐼 ↦ ( ( 𝑃𝑥 ) ‘ 𝐴 ) ) ∈ 𝑊𝐴 = ( 𝐺 Σg ( 𝑥𝐼 ↦ ( ( 𝑃𝑥 ) ‘ 𝐴 ) ) ) ) )
9 8 simprd ( 𝜑𝐴 = ( 𝐺 Σg ( 𝑥𝐼 ↦ ( ( 𝑃𝑥 ) ‘ 𝐴 ) ) ) )
10 9 eqeq1d ( 𝜑 → ( 𝐴 = ( 𝐺 Σg ( 𝑥𝐼𝐶 ) ) ↔ ( 𝐺 Σg ( 𝑥𝐼 ↦ ( ( 𝑃𝑥 ) ‘ 𝐴 ) ) ) = ( 𝐺 Σg ( 𝑥𝐼𝐶 ) ) ) )
11 8 simpld ( 𝜑 → ( 𝑥𝐼 ↦ ( ( 𝑃𝑥 ) ‘ 𝐴 ) ) ∈ 𝑊 )
12 5 6 1 2 11 7 dprdf11 ( 𝜑 → ( ( 𝐺 Σg ( 𝑥𝐼 ↦ ( ( 𝑃𝑥 ) ‘ 𝐴 ) ) ) = ( 𝐺 Σg ( 𝑥𝐼𝐶 ) ) ↔ ( 𝑥𝐼 ↦ ( ( 𝑃𝑥 ) ‘ 𝐴 ) ) = ( 𝑥𝐼𝐶 ) ) )
13 fvex ( ( 𝑃𝑥 ) ‘ 𝐴 ) ∈ V
14 13 rgenw 𝑥𝐼 ( ( 𝑃𝑥 ) ‘ 𝐴 ) ∈ V
15 mpteqb ( ∀ 𝑥𝐼 ( ( 𝑃𝑥 ) ‘ 𝐴 ) ∈ V → ( ( 𝑥𝐼 ↦ ( ( 𝑃𝑥 ) ‘ 𝐴 ) ) = ( 𝑥𝐼𝐶 ) ↔ ∀ 𝑥𝐼 ( ( 𝑃𝑥 ) ‘ 𝐴 ) = 𝐶 ) )
16 14 15 mp1i ( 𝜑 → ( ( 𝑥𝐼 ↦ ( ( 𝑃𝑥 ) ‘ 𝐴 ) ) = ( 𝑥𝐼𝐶 ) ↔ ∀ 𝑥𝐼 ( ( 𝑃𝑥 ) ‘ 𝐴 ) = 𝐶 ) )
17 10 12 16 3bitrd ( 𝜑 → ( 𝐴 = ( 𝐺 Σg ( 𝑥𝐼𝐶 ) ) ↔ ∀ 𝑥𝐼 ( ( 𝑃𝑥 ) ‘ 𝐴 ) = 𝐶 ) )