Step |
Hyp |
Ref |
Expression |
1 |
|
dpjfval.1 |
⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) |
2 |
|
dpjfval.2 |
⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) |
3 |
|
dpjfval.p |
⊢ 𝑃 = ( 𝐺 dProj 𝑆 ) |
4 |
|
dpjidcl.3 |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐺 DProd 𝑆 ) ) |
5 |
|
dpjidcl.0 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
6 |
|
dpjidcl.w |
⊢ 𝑊 = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } |
7 |
|
dpjeq.c |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝐶 ) ∈ 𝑊 ) |
8 |
1 2 3 4 5 6
|
dpjidcl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ) ) |
9 |
8
|
simprd |
⊢ ( 𝜑 → 𝐴 = ( 𝐺 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ) |
10 |
9
|
eqeq1d |
⊢ ( 𝜑 → ( 𝐴 = ( 𝐺 Σg ( 𝑥 ∈ 𝐼 ↦ 𝐶 ) ) ↔ ( 𝐺 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) ) = ( 𝐺 Σg ( 𝑥 ∈ 𝐼 ↦ 𝐶 ) ) ) ) |
11 |
8
|
simpld |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) ∈ 𝑊 ) |
12 |
5 6 1 2 11 7
|
dprdf11 |
⊢ ( 𝜑 → ( ( 𝐺 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) ) = ( 𝐺 Σg ( 𝑥 ∈ 𝐼 ↦ 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) = ( 𝑥 ∈ 𝐼 ↦ 𝐶 ) ) ) |
13 |
|
fvex |
⊢ ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ∈ V |
14 |
13
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝐼 ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ∈ V |
15 |
|
mpteqb |
⊢ ( ∀ 𝑥 ∈ 𝐼 ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ∈ V → ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) = ( 𝑥 ∈ 𝐼 ↦ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐼 ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) = 𝐶 ) ) |
16 |
14 15
|
mp1i |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) = ( 𝑥 ∈ 𝐼 ↦ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐼 ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) = 𝐶 ) ) |
17 |
10 12 16
|
3bitrd |
⊢ ( 𝜑 → ( 𝐴 = ( 𝐺 Σg ( 𝑥 ∈ 𝐼 ↦ 𝐶 ) ) ↔ ∀ 𝑥 ∈ 𝐼 ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) = 𝐶 ) ) |