| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dchrpt.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
| 2 |
|
dchrpt.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
| 3 |
|
dchrpt.d |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
| 4 |
|
dchrpt.b |
⊢ 𝐵 = ( Base ‘ 𝑍 ) |
| 5 |
|
dchrpt.1 |
⊢ 1 = ( 1r ‘ 𝑍 ) |
| 6 |
|
dchrpt.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 7 |
|
dchrpt.n1 |
⊢ ( 𝜑 → 𝐴 ≠ 1 ) |
| 8 |
|
dchrpt.u |
⊢ 𝑈 = ( Unit ‘ 𝑍 ) |
| 9 |
|
dchrpt.h |
⊢ 𝐻 = ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) |
| 10 |
|
dchrpt.m |
⊢ · = ( .g ‘ 𝐻 ) |
| 11 |
|
dchrpt.s |
⊢ 𝑆 = ( 𝑘 ∈ dom 𝑊 ↦ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · ( 𝑊 ‘ 𝑘 ) ) ) ) |
| 12 |
|
dchrpt.au |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
| 13 |
|
dchrpt.w |
⊢ ( 𝜑 → 𝑊 ∈ Word 𝑈 ) |
| 14 |
|
dchrpt.2 |
⊢ ( 𝜑 → 𝐻 dom DProd 𝑆 ) |
| 15 |
|
dchrpt.3 |
⊢ ( 𝜑 → ( 𝐻 DProd 𝑆 ) = 𝑈 ) |
| 16 |
6
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 17 |
2
|
zncrng |
⊢ ( 𝑁 ∈ ℕ0 → 𝑍 ∈ CRing ) |
| 18 |
16 17
|
syl |
⊢ ( 𝜑 → 𝑍 ∈ CRing ) |
| 19 |
|
crngring |
⊢ ( 𝑍 ∈ CRing → 𝑍 ∈ Ring ) |
| 20 |
18 19
|
syl |
⊢ ( 𝜑 → 𝑍 ∈ Ring ) |
| 21 |
8 9
|
unitgrp |
⊢ ( 𝑍 ∈ Ring → 𝐻 ∈ Grp ) |
| 22 |
20 21
|
syl |
⊢ ( 𝜑 → 𝐻 ∈ Grp ) |
| 23 |
22
|
grpmndd |
⊢ ( 𝜑 → 𝐻 ∈ Mnd ) |
| 24 |
13
|
dmexd |
⊢ ( 𝜑 → dom 𝑊 ∈ V ) |
| 25 |
|
eqid |
⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) |
| 26 |
25
|
gsumz |
⊢ ( ( 𝐻 ∈ Mnd ∧ dom 𝑊 ∈ V ) → ( 𝐻 Σg ( 𝑎 ∈ dom 𝑊 ↦ ( 0g ‘ 𝐻 ) ) ) = ( 0g ‘ 𝐻 ) ) |
| 27 |
23 24 26
|
syl2anc |
⊢ ( 𝜑 → ( 𝐻 Σg ( 𝑎 ∈ dom 𝑊 ↦ ( 0g ‘ 𝐻 ) ) ) = ( 0g ‘ 𝐻 ) ) |
| 28 |
8 9 5
|
unitgrpid |
⊢ ( 𝑍 ∈ Ring → 1 = ( 0g ‘ 𝐻 ) ) |
| 29 |
20 28
|
syl |
⊢ ( 𝜑 → 1 = ( 0g ‘ 𝐻 ) ) |
| 30 |
29
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑎 ∈ dom 𝑊 ↦ 1 ) = ( 𝑎 ∈ dom 𝑊 ↦ ( 0g ‘ 𝐻 ) ) ) |
| 31 |
30
|
oveq2d |
⊢ ( 𝜑 → ( 𝐻 Σg ( 𝑎 ∈ dom 𝑊 ↦ 1 ) ) = ( 𝐻 Σg ( 𝑎 ∈ dom 𝑊 ↦ ( 0g ‘ 𝐻 ) ) ) ) |
| 32 |
27 31 29
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐻 Σg ( 𝑎 ∈ dom 𝑊 ↦ 1 ) ) = 1 ) |
| 33 |
7 32
|
neeqtrrd |
⊢ ( 𝜑 → 𝐴 ≠ ( 𝐻 Σg ( 𝑎 ∈ dom 𝑊 ↦ 1 ) ) ) |
| 34 |
|
zex |
⊢ ℤ ∈ V |
| 35 |
34
|
mptex |
⊢ ( 𝑛 ∈ ℤ ↦ ( 𝑛 · ( 𝑊 ‘ 𝑘 ) ) ) ∈ V |
| 36 |
35
|
rnex |
⊢ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · ( 𝑊 ‘ 𝑘 ) ) ) ∈ V |
| 37 |
36 11
|
dmmpti |
⊢ dom 𝑆 = dom 𝑊 |
| 38 |
37
|
a1i |
⊢ ( 𝜑 → dom 𝑆 = dom 𝑊 ) |
| 39 |
|
eqid |
⊢ ( 𝐻 dProj 𝑆 ) = ( 𝐻 dProj 𝑆 ) |
| 40 |
12 15
|
eleqtrrd |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐻 DProd 𝑆 ) ) |
| 41 |
|
eqid |
⊢ { ℎ ∈ X 𝑖 ∈ dom 𝑊 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐻 ) } = { ℎ ∈ X 𝑖 ∈ dom 𝑊 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐻 ) } |
| 42 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ dom 𝑊 ) → 1 = ( 0g ‘ 𝐻 ) ) |
| 43 |
14 38
|
dprdf2 |
⊢ ( 𝜑 → 𝑆 : dom 𝑊 ⟶ ( SubGrp ‘ 𝐻 ) ) |
| 44 |
43
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ dom 𝑊 ) → ( 𝑆 ‘ 𝑎 ) ∈ ( SubGrp ‘ 𝐻 ) ) |
| 45 |
25
|
subg0cl |
⊢ ( ( 𝑆 ‘ 𝑎 ) ∈ ( SubGrp ‘ 𝐻 ) → ( 0g ‘ 𝐻 ) ∈ ( 𝑆 ‘ 𝑎 ) ) |
| 46 |
44 45
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ dom 𝑊 ) → ( 0g ‘ 𝐻 ) ∈ ( 𝑆 ‘ 𝑎 ) ) |
| 47 |
42 46
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ dom 𝑊 ) → 1 ∈ ( 𝑆 ‘ 𝑎 ) ) |
| 48 |
5
|
fvexi |
⊢ 1 ∈ V |
| 49 |
48
|
a1i |
⊢ ( 𝜑 → 1 ∈ V ) |
| 50 |
24 49
|
fczfsuppd |
⊢ ( 𝜑 → ( dom 𝑊 × { 1 } ) finSupp 1 ) |
| 51 |
|
fconstmpt |
⊢ ( dom 𝑊 × { 1 } ) = ( 𝑎 ∈ dom 𝑊 ↦ 1 ) |
| 52 |
51
|
eqcomi |
⊢ ( 𝑎 ∈ dom 𝑊 ↦ 1 ) = ( dom 𝑊 × { 1 } ) |
| 53 |
52
|
a1i |
⊢ ( 𝜑 → ( 𝑎 ∈ dom 𝑊 ↦ 1 ) = ( dom 𝑊 × { 1 } ) ) |
| 54 |
29
|
eqcomd |
⊢ ( 𝜑 → ( 0g ‘ 𝐻 ) = 1 ) |
| 55 |
50 53 54
|
3brtr4d |
⊢ ( 𝜑 → ( 𝑎 ∈ dom 𝑊 ↦ 1 ) finSupp ( 0g ‘ 𝐻 ) ) |
| 56 |
41 14 38 47 55
|
dprdwd |
⊢ ( 𝜑 → ( 𝑎 ∈ dom 𝑊 ↦ 1 ) ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑊 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐻 ) } ) |
| 57 |
14 38 39 40 25 41 56
|
dpjeq |
⊢ ( 𝜑 → ( 𝐴 = ( 𝐻 Σg ( 𝑎 ∈ dom 𝑊 ↦ 1 ) ) ↔ ∀ 𝑎 ∈ dom 𝑊 ( ( ( 𝐻 dProj 𝑆 ) ‘ 𝑎 ) ‘ 𝐴 ) = 1 ) ) |
| 58 |
57
|
necon3abid |
⊢ ( 𝜑 → ( 𝐴 ≠ ( 𝐻 Σg ( 𝑎 ∈ dom 𝑊 ↦ 1 ) ) ↔ ¬ ∀ 𝑎 ∈ dom 𝑊 ( ( ( 𝐻 dProj 𝑆 ) ‘ 𝑎 ) ‘ 𝐴 ) = 1 ) ) |
| 59 |
33 58
|
mpbid |
⊢ ( 𝜑 → ¬ ∀ 𝑎 ∈ dom 𝑊 ( ( ( 𝐻 dProj 𝑆 ) ‘ 𝑎 ) ‘ 𝐴 ) = 1 ) |
| 60 |
|
rexnal |
⊢ ( ∃ 𝑎 ∈ dom 𝑊 ¬ ( ( ( 𝐻 dProj 𝑆 ) ‘ 𝑎 ) ‘ 𝐴 ) = 1 ↔ ¬ ∀ 𝑎 ∈ dom 𝑊 ( ( ( 𝐻 dProj 𝑆 ) ‘ 𝑎 ) ‘ 𝐴 ) = 1 ) |
| 61 |
59 60
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑎 ∈ dom 𝑊 ¬ ( ( ( 𝐻 dProj 𝑆 ) ‘ 𝑎 ) ‘ 𝐴 ) = 1 ) |
| 62 |
|
df-ne |
⊢ ( ( ( ( 𝐻 dProj 𝑆 ) ‘ 𝑎 ) ‘ 𝐴 ) ≠ 1 ↔ ¬ ( ( ( 𝐻 dProj 𝑆 ) ‘ 𝑎 ) ‘ 𝐴 ) = 1 ) |
| 63 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ dom 𝑊 ∧ ( ( ( 𝐻 dProj 𝑆 ) ‘ 𝑎 ) ‘ 𝐴 ) ≠ 1 ) ) → 𝑁 ∈ ℕ ) |
| 64 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ dom 𝑊 ∧ ( ( ( 𝐻 dProj 𝑆 ) ‘ 𝑎 ) ‘ 𝐴 ) ≠ 1 ) ) → 𝐴 ≠ 1 ) |
| 65 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ dom 𝑊 ∧ ( ( ( 𝐻 dProj 𝑆 ) ‘ 𝑎 ) ‘ 𝐴 ) ≠ 1 ) ) → 𝐴 ∈ 𝑈 ) |
| 66 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ dom 𝑊 ∧ ( ( ( 𝐻 dProj 𝑆 ) ‘ 𝑎 ) ‘ 𝐴 ) ≠ 1 ) ) → 𝑊 ∈ Word 𝑈 ) |
| 67 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ dom 𝑊 ∧ ( ( ( 𝐻 dProj 𝑆 ) ‘ 𝑎 ) ‘ 𝐴 ) ≠ 1 ) ) → 𝐻 dom DProd 𝑆 ) |
| 68 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ dom 𝑊 ∧ ( ( ( 𝐻 dProj 𝑆 ) ‘ 𝑎 ) ‘ 𝐴 ) ≠ 1 ) ) → ( 𝐻 DProd 𝑆 ) = 𝑈 ) |
| 69 |
|
eqid |
⊢ ( od ‘ 𝐻 ) = ( od ‘ 𝐻 ) |
| 70 |
|
eqid |
⊢ ( - 1 ↑𝑐 ( 2 / ( ( od ‘ 𝐻 ) ‘ ( 𝑊 ‘ 𝑎 ) ) ) ) = ( - 1 ↑𝑐 ( 2 / ( ( od ‘ 𝐻 ) ‘ ( 𝑊 ‘ 𝑎 ) ) ) ) |
| 71 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ dom 𝑊 ∧ ( ( ( 𝐻 dProj 𝑆 ) ‘ 𝑎 ) ‘ 𝐴 ) ≠ 1 ) ) → 𝑎 ∈ dom 𝑊 ) |
| 72 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ dom 𝑊 ∧ ( ( ( 𝐻 dProj 𝑆 ) ‘ 𝑎 ) ‘ 𝐴 ) ≠ 1 ) ) → ( ( ( 𝐻 dProj 𝑆 ) ‘ 𝑎 ) ‘ 𝐴 ) ≠ 1 ) |
| 73 |
|
eqid |
⊢ ( 𝑢 ∈ 𝑈 ↦ ( ℩ ℎ ∃ 𝑚 ∈ ℤ ( ( ( ( 𝐻 dProj 𝑆 ) ‘ 𝑎 ) ‘ 𝑢 ) = ( 𝑚 · ( 𝑊 ‘ 𝑎 ) ) ∧ ℎ = ( ( - 1 ↑𝑐 ( 2 / ( ( od ‘ 𝐻 ) ‘ ( 𝑊 ‘ 𝑎 ) ) ) ) ↑ 𝑚 ) ) ) ) = ( 𝑢 ∈ 𝑈 ↦ ( ℩ ℎ ∃ 𝑚 ∈ ℤ ( ( ( ( 𝐻 dProj 𝑆 ) ‘ 𝑎 ) ‘ 𝑢 ) = ( 𝑚 · ( 𝑊 ‘ 𝑎 ) ) ∧ ℎ = ( ( - 1 ↑𝑐 ( 2 / ( ( od ‘ 𝐻 ) ‘ ( 𝑊 ‘ 𝑎 ) ) ) ) ↑ 𝑚 ) ) ) ) |
| 74 |
1 2 3 4 5 63 64 8 9 10 11 65 66 67 68 39 69 70 71 72 73
|
dchrptlem2 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ dom 𝑊 ∧ ( ( ( 𝐻 dProj 𝑆 ) ‘ 𝑎 ) ‘ 𝐴 ) ≠ 1 ) ) → ∃ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) ≠ 1 ) |
| 75 |
74
|
expr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ dom 𝑊 ) → ( ( ( ( 𝐻 dProj 𝑆 ) ‘ 𝑎 ) ‘ 𝐴 ) ≠ 1 → ∃ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) ≠ 1 ) ) |
| 76 |
62 75
|
biimtrrid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ dom 𝑊 ) → ( ¬ ( ( ( 𝐻 dProj 𝑆 ) ‘ 𝑎 ) ‘ 𝐴 ) = 1 → ∃ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) ≠ 1 ) ) |
| 77 |
76
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ dom 𝑊 ¬ ( ( ( 𝐻 dProj 𝑆 ) ‘ 𝑎 ) ‘ 𝐴 ) = 1 → ∃ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) ≠ 1 ) ) |
| 78 |
61 77
|
mpd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) ≠ 1 ) |