| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dchrpt.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
| 2 |
|
dchrpt.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
| 3 |
|
dchrpt.d |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
| 4 |
|
dchrpt.b |
⊢ 𝐵 = ( Base ‘ 𝑍 ) |
| 5 |
|
dchrpt.1 |
⊢ 1 = ( 1r ‘ 𝑍 ) |
| 6 |
|
dchrpt.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 7 |
|
dchrpt.n1 |
⊢ ( 𝜑 → 𝐴 ≠ 1 ) |
| 8 |
|
dchrpt.u |
⊢ 𝑈 = ( Unit ‘ 𝑍 ) |
| 9 |
|
dchrpt.h |
⊢ 𝐻 = ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) |
| 10 |
|
dchrpt.m |
⊢ · = ( .g ‘ 𝐻 ) |
| 11 |
|
dchrpt.s |
⊢ 𝑆 = ( 𝑘 ∈ dom 𝑊 ↦ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · ( 𝑊 ‘ 𝑘 ) ) ) ) |
| 12 |
|
dchrpt.au |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
| 13 |
|
dchrpt.w |
⊢ ( 𝜑 → 𝑊 ∈ Word 𝑈 ) |
| 14 |
|
dchrpt.2 |
⊢ ( 𝜑 → 𝐻 dom DProd 𝑆 ) |
| 15 |
|
dchrpt.3 |
⊢ ( 𝜑 → ( 𝐻 DProd 𝑆 ) = 𝑈 ) |
| 16 |
|
dchrpt.p |
⊢ 𝑃 = ( 𝐻 dProj 𝑆 ) |
| 17 |
|
dchrpt.o |
⊢ 𝑂 = ( od ‘ 𝐻 ) |
| 18 |
|
dchrpt.t |
⊢ 𝑇 = ( - 1 ↑𝑐 ( 2 / ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ) ) |
| 19 |
|
dchrpt.i |
⊢ ( 𝜑 → 𝐼 ∈ dom 𝑊 ) |
| 20 |
|
dchrpt.4 |
⊢ ( 𝜑 → ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) ≠ 1 ) |
| 21 |
|
dchrpt.5 |
⊢ 𝑋 = ( 𝑢 ∈ 𝑈 ↦ ( ℩ ℎ ∃ 𝑚 ∈ ℤ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑢 ) = ( 𝑚 · ( 𝑊 ‘ 𝐼 ) ) ∧ ℎ = ( 𝑇 ↑ 𝑚 ) ) ) ) |
| 22 |
|
fveq2 |
⊢ ( 𝑣 = 𝑥 → ( 𝑋 ‘ 𝑣 ) = ( 𝑋 ‘ 𝑥 ) ) |
| 23 |
|
fveq2 |
⊢ ( 𝑣 = 𝑦 → ( 𝑋 ‘ 𝑣 ) = ( 𝑋 ‘ 𝑦 ) ) |
| 24 |
|
fveq2 |
⊢ ( 𝑣 = ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) → ( 𝑋 ‘ 𝑣 ) = ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) ) |
| 25 |
|
fveq2 |
⊢ ( 𝑣 = ( 1r ‘ 𝑍 ) → ( 𝑋 ‘ 𝑣 ) = ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) ) |
| 26 |
|
zex |
⊢ ℤ ∈ V |
| 27 |
26
|
mptex |
⊢ ( 𝑛 ∈ ℤ ↦ ( 𝑛 · ( 𝑊 ‘ 𝑘 ) ) ) ∈ V |
| 28 |
27
|
rnex |
⊢ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · ( 𝑊 ‘ 𝑘 ) ) ) ∈ V |
| 29 |
28 11
|
dmmpti |
⊢ dom 𝑆 = dom 𝑊 |
| 30 |
29
|
a1i |
⊢ ( 𝜑 → dom 𝑆 = dom 𝑊 ) |
| 31 |
14 30 16 19
|
dpjf |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝐼 ) : ( 𝐻 DProd 𝑆 ) ⟶ ( 𝑆 ‘ 𝐼 ) ) |
| 32 |
15
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑃 ‘ 𝐼 ) : ( 𝐻 DProd 𝑆 ) ⟶ ( 𝑆 ‘ 𝐼 ) ↔ ( 𝑃 ‘ 𝐼 ) : 𝑈 ⟶ ( 𝑆 ‘ 𝐼 ) ) ) |
| 33 |
31 32
|
mpbid |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝐼 ) : 𝑈 ⟶ ( 𝑆 ‘ 𝐼 ) ) |
| 34 |
33
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) → ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) ∈ ( 𝑆 ‘ 𝐼 ) ) |
| 35 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) → 𝐼 ∈ dom 𝑊 ) |
| 36 |
|
oveq1 |
⊢ ( 𝑛 = 𝑎 → ( 𝑛 · ( 𝑊 ‘ 𝑘 ) ) = ( 𝑎 · ( 𝑊 ‘ 𝑘 ) ) ) |
| 37 |
36
|
cbvmptv |
⊢ ( 𝑛 ∈ ℤ ↦ ( 𝑛 · ( 𝑊 ‘ 𝑘 ) ) ) = ( 𝑎 ∈ ℤ ↦ ( 𝑎 · ( 𝑊 ‘ 𝑘 ) ) ) |
| 38 |
|
fveq2 |
⊢ ( 𝑘 = 𝐼 → ( 𝑊 ‘ 𝑘 ) = ( 𝑊 ‘ 𝐼 ) ) |
| 39 |
38
|
oveq2d |
⊢ ( 𝑘 = 𝐼 → ( 𝑎 · ( 𝑊 ‘ 𝑘 ) ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) |
| 40 |
39
|
mpteq2dv |
⊢ ( 𝑘 = 𝐼 → ( 𝑎 ∈ ℤ ↦ ( 𝑎 · ( 𝑊 ‘ 𝑘 ) ) ) = ( 𝑎 ∈ ℤ ↦ ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) |
| 41 |
37 40
|
eqtrid |
⊢ ( 𝑘 = 𝐼 → ( 𝑛 ∈ ℤ ↦ ( 𝑛 · ( 𝑊 ‘ 𝑘 ) ) ) = ( 𝑎 ∈ ℤ ↦ ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) |
| 42 |
41
|
rneqd |
⊢ ( 𝑘 = 𝐼 → ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · ( 𝑊 ‘ 𝑘 ) ) ) = ran ( 𝑎 ∈ ℤ ↦ ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) |
| 43 |
42 11 28
|
fvmpt3i |
⊢ ( 𝐼 ∈ dom 𝑊 → ( 𝑆 ‘ 𝐼 ) = ran ( 𝑎 ∈ ℤ ↦ ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) |
| 44 |
35 43
|
syl |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) → ( 𝑆 ‘ 𝐼 ) = ran ( 𝑎 ∈ ℤ ↦ ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) |
| 45 |
34 44
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) → ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) ∈ ran ( 𝑎 ∈ ℤ ↦ ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) |
| 46 |
|
eqid |
⊢ ( 𝑎 ∈ ℤ ↦ ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) = ( 𝑎 ∈ ℤ ↦ ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) |
| 47 |
|
ovex |
⊢ ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∈ V |
| 48 |
46 47
|
elrnmpti |
⊢ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) ∈ ran ( 𝑎 ∈ ℤ ↦ ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ↔ ∃ 𝑎 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) |
| 49 |
45 48
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) → ∃ 𝑎 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) |
| 50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
|
dchrptlem1 |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( 𝑋 ‘ 𝑣 ) = ( 𝑇 ↑ 𝑎 ) ) |
| 51 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 52 |
|
2re |
⊢ 2 ∈ ℝ |
| 53 |
6
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 54 |
2
|
zncrng |
⊢ ( 𝑁 ∈ ℕ0 → 𝑍 ∈ CRing ) |
| 55 |
|
crngring |
⊢ ( 𝑍 ∈ CRing → 𝑍 ∈ Ring ) |
| 56 |
53 54 55
|
3syl |
⊢ ( 𝜑 → 𝑍 ∈ Ring ) |
| 57 |
8 9
|
unitgrp |
⊢ ( 𝑍 ∈ Ring → 𝐻 ∈ Grp ) |
| 58 |
56 57
|
syl |
⊢ ( 𝜑 → 𝐻 ∈ Grp ) |
| 59 |
2 4
|
znfi |
⊢ ( 𝑁 ∈ ℕ → 𝐵 ∈ Fin ) |
| 60 |
6 59
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
| 61 |
4 8
|
unitss |
⊢ 𝑈 ⊆ 𝐵 |
| 62 |
|
ssfi |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝑈 ⊆ 𝐵 ) → 𝑈 ∈ Fin ) |
| 63 |
60 61 62
|
sylancl |
⊢ ( 𝜑 → 𝑈 ∈ Fin ) |
| 64 |
|
wrdf |
⊢ ( 𝑊 ∈ Word 𝑈 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑈 ) |
| 65 |
13 64
|
syl |
⊢ ( 𝜑 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑈 ) |
| 66 |
65
|
fdmd |
⊢ ( 𝜑 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 67 |
19 66
|
eleqtrd |
⊢ ( 𝜑 → 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 68 |
65 67
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑊 ‘ 𝐼 ) ∈ 𝑈 ) |
| 69 |
8 9
|
unitgrpbas |
⊢ 𝑈 = ( Base ‘ 𝐻 ) |
| 70 |
69 17
|
odcl2 |
⊢ ( ( 𝐻 ∈ Grp ∧ 𝑈 ∈ Fin ∧ ( 𝑊 ‘ 𝐼 ) ∈ 𝑈 ) → ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ∈ ℕ ) |
| 71 |
58 63 68 70
|
syl3anc |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ∈ ℕ ) |
| 72 |
|
nndivre |
⊢ ( ( 2 ∈ ℝ ∧ ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ∈ ℕ ) → ( 2 / ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ) ∈ ℝ ) |
| 73 |
52 71 72
|
sylancr |
⊢ ( 𝜑 → ( 2 / ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ) ∈ ℝ ) |
| 74 |
73
|
recnd |
⊢ ( 𝜑 → ( 2 / ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ) ∈ ℂ ) |
| 75 |
|
cxpcl |
⊢ ( ( - 1 ∈ ℂ ∧ ( 2 / ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ) ∈ ℂ ) → ( - 1 ↑𝑐 ( 2 / ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ) ) ∈ ℂ ) |
| 76 |
51 74 75
|
sylancr |
⊢ ( 𝜑 → ( - 1 ↑𝑐 ( 2 / ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ) ) ∈ ℂ ) |
| 77 |
18 76
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
| 78 |
77
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → 𝑇 ∈ ℂ ) |
| 79 |
51
|
a1i |
⊢ ( 𝜑 → - 1 ∈ ℂ ) |
| 80 |
|
neg1ne0 |
⊢ - 1 ≠ 0 |
| 81 |
80
|
a1i |
⊢ ( 𝜑 → - 1 ≠ 0 ) |
| 82 |
79 81 74
|
cxpne0d |
⊢ ( 𝜑 → ( - 1 ↑𝑐 ( 2 / ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ) ) ≠ 0 ) |
| 83 |
18
|
neeq1i |
⊢ ( 𝑇 ≠ 0 ↔ ( - 1 ↑𝑐 ( 2 / ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ) ) ≠ 0 ) |
| 84 |
82 83
|
sylibr |
⊢ ( 𝜑 → 𝑇 ≠ 0 ) |
| 85 |
84
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → 𝑇 ≠ 0 ) |
| 86 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → 𝑎 ∈ ℤ ) |
| 87 |
78 85 86
|
expclzd |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( 𝑇 ↑ 𝑎 ) ∈ ℂ ) |
| 88 |
50 87
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( 𝑋 ‘ 𝑣 ) ∈ ℂ ) |
| 89 |
49 88
|
rexlimddv |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) → ( 𝑋 ‘ 𝑣 ) ∈ ℂ ) |
| 90 |
|
fveqeq2 |
⊢ ( 𝑣 = 𝑥 → ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ↔ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) |
| 91 |
90
|
rexbidv |
⊢ ( 𝑣 = 𝑥 → ( ∃ 𝑎 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ↔ ∃ 𝑎 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) |
| 92 |
49
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) |
| 93 |
92
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) |
| 94 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑥 ∈ 𝑈 ) |
| 95 |
91 93 94
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ∃ 𝑎 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) |
| 96 |
|
fveqeq2 |
⊢ ( 𝑣 = 𝑦 → ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ↔ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) |
| 97 |
96
|
rexbidv |
⊢ ( 𝑣 = 𝑦 → ( ∃ 𝑎 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ↔ ∃ 𝑎 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) |
| 98 |
|
oveq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) |
| 99 |
98
|
eqeq2d |
⊢ ( 𝑎 = 𝑏 → ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ↔ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) |
| 100 |
99
|
cbvrexvw |
⊢ ( ∃ 𝑎 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ↔ ∃ 𝑏 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) |
| 101 |
97 100
|
bitrdi |
⊢ ( 𝑣 = 𝑦 → ( ∃ 𝑎 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ↔ ∃ 𝑏 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) |
| 102 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑦 ∈ 𝑈 ) |
| 103 |
101 93 102
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ∃ 𝑏 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) |
| 104 |
|
reeanv |
⊢ ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ↔ ( ∃ 𝑎 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ∃ 𝑏 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) |
| 105 |
77
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → 𝑇 ∈ ℂ ) |
| 106 |
84
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → 𝑇 ≠ 0 ) |
| 107 |
|
simprll |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → 𝑎 ∈ ℤ ) |
| 108 |
|
simprlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → 𝑏 ∈ ℤ ) |
| 109 |
|
expaddz |
⊢ ( ( ( 𝑇 ∈ ℂ ∧ 𝑇 ≠ 0 ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝑇 ↑ ( 𝑎 + 𝑏 ) ) = ( ( 𝑇 ↑ 𝑎 ) · ( 𝑇 ↑ 𝑏 ) ) ) |
| 110 |
105 106 107 108 109
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → ( 𝑇 ↑ ( 𝑎 + 𝑏 ) ) = ( ( 𝑇 ↑ 𝑎 ) · ( 𝑇 ↑ 𝑏 ) ) ) |
| 111 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → 𝜑 ) |
| 112 |
56
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → 𝑍 ∈ Ring ) |
| 113 |
94
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → 𝑥 ∈ 𝑈 ) |
| 114 |
102
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → 𝑦 ∈ 𝑈 ) |
| 115 |
|
eqid |
⊢ ( .r ‘ 𝑍 ) = ( .r ‘ 𝑍 ) |
| 116 |
8 115
|
unitmulcl |
⊢ ( ( 𝑍 ∈ Ring ∧ 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) → ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ∈ 𝑈 ) |
| 117 |
112 113 114 116
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ∈ 𝑈 ) |
| 118 |
107 108
|
zaddcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → ( 𝑎 + 𝑏 ) ∈ ℤ ) |
| 119 |
|
simprrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) |
| 120 |
|
simprrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) |
| 121 |
119 120
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) ( .r ‘ 𝑍 ) ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) ) = ( ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ( .r ‘ 𝑍 ) ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) |
| 122 |
14 30 16 19
|
dpjghm |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝐼 ) ∈ ( ( 𝐻 ↾s ( 𝐻 DProd 𝑆 ) ) GrpHom 𝐻 ) ) |
| 123 |
15
|
oveq2d |
⊢ ( 𝜑 → ( 𝐻 ↾s ( 𝐻 DProd 𝑆 ) ) = ( 𝐻 ↾s 𝑈 ) ) |
| 124 |
9
|
ovexi |
⊢ 𝐻 ∈ V |
| 125 |
69
|
ressid |
⊢ ( 𝐻 ∈ V → ( 𝐻 ↾s 𝑈 ) = 𝐻 ) |
| 126 |
124 125
|
ax-mp |
⊢ ( 𝐻 ↾s 𝑈 ) = 𝐻 |
| 127 |
123 126
|
eqtrdi |
⊢ ( 𝜑 → ( 𝐻 ↾s ( 𝐻 DProd 𝑆 ) ) = 𝐻 ) |
| 128 |
127
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐻 ↾s ( 𝐻 DProd 𝑆 ) ) GrpHom 𝐻 ) = ( 𝐻 GrpHom 𝐻 ) ) |
| 129 |
122 128
|
eleqtrd |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝐼 ) ∈ ( 𝐻 GrpHom 𝐻 ) ) |
| 130 |
129
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → ( 𝑃 ‘ 𝐼 ) ∈ ( 𝐻 GrpHom 𝐻 ) ) |
| 131 |
8
|
fvexi |
⊢ 𝑈 ∈ V |
| 132 |
|
eqid |
⊢ ( mulGrp ‘ 𝑍 ) = ( mulGrp ‘ 𝑍 ) |
| 133 |
132 115
|
mgpplusg |
⊢ ( .r ‘ 𝑍 ) = ( +g ‘ ( mulGrp ‘ 𝑍 ) ) |
| 134 |
9 133
|
ressplusg |
⊢ ( 𝑈 ∈ V → ( .r ‘ 𝑍 ) = ( +g ‘ 𝐻 ) ) |
| 135 |
131 134
|
ax-mp |
⊢ ( .r ‘ 𝑍 ) = ( +g ‘ 𝐻 ) |
| 136 |
69 135 135
|
ghmlin |
⊢ ( ( ( 𝑃 ‘ 𝐼 ) ∈ ( 𝐻 GrpHom 𝐻 ) ∧ 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) → ( ( 𝑃 ‘ 𝐼 ) ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) ( .r ‘ 𝑍 ) ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) ) ) |
| 137 |
130 113 114 136
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → ( ( 𝑃 ‘ 𝐼 ) ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) ( .r ‘ 𝑍 ) ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) ) ) |
| 138 |
58
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → 𝐻 ∈ Grp ) |
| 139 |
68
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → ( 𝑊 ‘ 𝐼 ) ∈ 𝑈 ) |
| 140 |
69 10 135
|
mulgdir |
⊢ ( ( 𝐻 ∈ Grp ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ ( 𝑊 ‘ 𝐼 ) ∈ 𝑈 ) ) → ( ( 𝑎 + 𝑏 ) · ( 𝑊 ‘ 𝐼 ) ) = ( ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ( .r ‘ 𝑍 ) ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) |
| 141 |
138 107 108 139 140
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → ( ( 𝑎 + 𝑏 ) · ( 𝑊 ‘ 𝐼 ) ) = ( ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ( .r ‘ 𝑍 ) ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) |
| 142 |
121 137 141
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → ( ( 𝑃 ‘ 𝐼 ) ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑎 + 𝑏 ) · ( 𝑊 ‘ 𝐼 ) ) ) |
| 143 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
|
dchrptlem1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ∈ 𝑈 ) ∧ ( ( 𝑎 + 𝑏 ) ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑎 + 𝑏 ) · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( 𝑇 ↑ ( 𝑎 + 𝑏 ) ) ) |
| 144 |
111 117 118 142 143
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( 𝑇 ↑ ( 𝑎 + 𝑏 ) ) ) |
| 145 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
|
dchrptlem1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( 𝑋 ‘ 𝑥 ) = ( 𝑇 ↑ 𝑎 ) ) |
| 146 |
111 113 107 119 145
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → ( 𝑋 ‘ 𝑥 ) = ( 𝑇 ↑ 𝑎 ) ) |
| 147 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
|
dchrptlem1 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑈 ) ∧ ( 𝑏 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( 𝑋 ‘ 𝑦 ) = ( 𝑇 ↑ 𝑏 ) ) |
| 148 |
111 114 108 120 147
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → ( 𝑋 ‘ 𝑦 ) = ( 𝑇 ↑ 𝑏 ) ) |
| 149 |
146 148
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) = ( ( 𝑇 ↑ 𝑎 ) · ( 𝑇 ↑ 𝑏 ) ) ) |
| 150 |
110 144 149
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) |
| 151 |
150
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) ) |
| 152 |
151
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) ) |
| 153 |
104 152
|
biimtrrid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ( ∃ 𝑎 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ∃ 𝑏 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) ) |
| 154 |
95 103 153
|
mp2and |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) |
| 155 |
|
id |
⊢ ( 𝜑 → 𝜑 ) |
| 156 |
|
eqid |
⊢ ( 1r ‘ 𝑍 ) = ( 1r ‘ 𝑍 ) |
| 157 |
8 156
|
1unit |
⊢ ( 𝑍 ∈ Ring → ( 1r ‘ 𝑍 ) ∈ 𝑈 ) |
| 158 |
56 157
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑍 ) ∈ 𝑈 ) |
| 159 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 160 |
|
eqid |
⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) |
| 161 |
160 160
|
ghmid |
⊢ ( ( 𝑃 ‘ 𝐼 ) ∈ ( 𝐻 GrpHom 𝐻 ) → ( ( 𝑃 ‘ 𝐼 ) ‘ ( 0g ‘ 𝐻 ) ) = ( 0g ‘ 𝐻 ) ) |
| 162 |
129 161
|
syl |
⊢ ( 𝜑 → ( ( 𝑃 ‘ 𝐼 ) ‘ ( 0g ‘ 𝐻 ) ) = ( 0g ‘ 𝐻 ) ) |
| 163 |
8 9 156
|
unitgrpid |
⊢ ( 𝑍 ∈ Ring → ( 1r ‘ 𝑍 ) = ( 0g ‘ 𝐻 ) ) |
| 164 |
56 163
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑍 ) = ( 0g ‘ 𝐻 ) ) |
| 165 |
164
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝑃 ‘ 𝐼 ) ‘ ( 1r ‘ 𝑍 ) ) = ( ( 𝑃 ‘ 𝐼 ) ‘ ( 0g ‘ 𝐻 ) ) ) |
| 166 |
69 160 10
|
mulg0 |
⊢ ( ( 𝑊 ‘ 𝐼 ) ∈ 𝑈 → ( 0 · ( 𝑊 ‘ 𝐼 ) ) = ( 0g ‘ 𝐻 ) ) |
| 167 |
68 166
|
syl |
⊢ ( 𝜑 → ( 0 · ( 𝑊 ‘ 𝐼 ) ) = ( 0g ‘ 𝐻 ) ) |
| 168 |
162 165 167
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝑃 ‘ 𝐼 ) ‘ ( 1r ‘ 𝑍 ) ) = ( 0 · ( 𝑊 ‘ 𝐼 ) ) ) |
| 169 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
|
dchrptlem1 |
⊢ ( ( ( 𝜑 ∧ ( 1r ‘ 𝑍 ) ∈ 𝑈 ) ∧ ( 0 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ ( 1r ‘ 𝑍 ) ) = ( 0 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = ( 𝑇 ↑ 0 ) ) |
| 170 |
155 158 159 168 169
|
syl22anc |
⊢ ( 𝜑 → ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = ( 𝑇 ↑ 0 ) ) |
| 171 |
77
|
exp0d |
⊢ ( 𝜑 → ( 𝑇 ↑ 0 ) = 1 ) |
| 172 |
170 171
|
eqtrd |
⊢ ( 𝜑 → ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ) |
| 173 |
1 2 4 8 6 3 22 23 24 25 89 154 172
|
dchrelbasd |
⊢ ( 𝜑 → ( 𝑣 ∈ 𝐵 ↦ if ( 𝑣 ∈ 𝑈 , ( 𝑋 ‘ 𝑣 ) , 0 ) ) ∈ 𝐷 ) |
| 174 |
61 12
|
sselid |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
| 175 |
|
eleq1 |
⊢ ( 𝑣 = 𝐴 → ( 𝑣 ∈ 𝑈 ↔ 𝐴 ∈ 𝑈 ) ) |
| 176 |
|
fveq2 |
⊢ ( 𝑣 = 𝐴 → ( 𝑋 ‘ 𝑣 ) = ( 𝑋 ‘ 𝐴 ) ) |
| 177 |
175 176
|
ifbieq1d |
⊢ ( 𝑣 = 𝐴 → if ( 𝑣 ∈ 𝑈 , ( 𝑋 ‘ 𝑣 ) , 0 ) = if ( 𝐴 ∈ 𝑈 , ( 𝑋 ‘ 𝐴 ) , 0 ) ) |
| 178 |
|
eqid |
⊢ ( 𝑣 ∈ 𝐵 ↦ if ( 𝑣 ∈ 𝑈 , ( 𝑋 ‘ 𝑣 ) , 0 ) ) = ( 𝑣 ∈ 𝐵 ↦ if ( 𝑣 ∈ 𝑈 , ( 𝑋 ‘ 𝑣 ) , 0 ) ) |
| 179 |
|
fvex |
⊢ ( 𝑋 ‘ 𝑣 ) ∈ V |
| 180 |
|
c0ex |
⊢ 0 ∈ V |
| 181 |
179 180
|
ifex |
⊢ if ( 𝑣 ∈ 𝑈 , ( 𝑋 ‘ 𝑣 ) , 0 ) ∈ V |
| 182 |
177 178 181
|
fvmpt3i |
⊢ ( 𝐴 ∈ 𝐵 → ( ( 𝑣 ∈ 𝐵 ↦ if ( 𝑣 ∈ 𝑈 , ( 𝑋 ‘ 𝑣 ) , 0 ) ) ‘ 𝐴 ) = if ( 𝐴 ∈ 𝑈 , ( 𝑋 ‘ 𝐴 ) , 0 ) ) |
| 183 |
174 182
|
syl |
⊢ ( 𝜑 → ( ( 𝑣 ∈ 𝐵 ↦ if ( 𝑣 ∈ 𝑈 , ( 𝑋 ‘ 𝑣 ) , 0 ) ) ‘ 𝐴 ) = if ( 𝐴 ∈ 𝑈 , ( 𝑋 ‘ 𝐴 ) , 0 ) ) |
| 184 |
12
|
iftrued |
⊢ ( 𝜑 → if ( 𝐴 ∈ 𝑈 , ( 𝑋 ‘ 𝐴 ) , 0 ) = ( 𝑋 ‘ 𝐴 ) ) |
| 185 |
183 184
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑣 ∈ 𝐵 ↦ if ( 𝑣 ∈ 𝑈 , ( 𝑋 ‘ 𝑣 ) , 0 ) ) ‘ 𝐴 ) = ( 𝑋 ‘ 𝐴 ) ) |
| 186 |
|
fveqeq2 |
⊢ ( 𝑣 = 𝐴 → ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ↔ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) |
| 187 |
186
|
rexbidv |
⊢ ( 𝑣 = 𝐴 → ( ∃ 𝑎 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ↔ ∃ 𝑎 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) |
| 188 |
187 92 12
|
rspcdva |
⊢ ( 𝜑 → ∃ 𝑎 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) |
| 189 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
|
dchrptlem1 |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( 𝑋 ‘ 𝐴 ) = ( 𝑇 ↑ 𝑎 ) ) |
| 190 |
18
|
oveq1i |
⊢ ( 𝑇 ↑ 𝑎 ) = ( ( - 1 ↑𝑐 ( 2 / ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ) ) ↑ 𝑎 ) |
| 191 |
189 190
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( 𝑋 ‘ 𝐴 ) = ( ( - 1 ↑𝑐 ( 2 / ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ) ) ↑ 𝑎 ) ) |
| 192 |
20
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) ≠ 1 ) |
| 193 |
58
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → 𝐻 ∈ Grp ) |
| 194 |
68
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) ∈ 𝑈 ) |
| 195 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → 𝑎 ∈ ℤ ) |
| 196 |
69 17 10 160
|
oddvds |
⊢ ( ( 𝐻 ∈ Grp ∧ ( 𝑊 ‘ 𝐼 ) ∈ 𝑈 ∧ 𝑎 ∈ ℤ ) → ( ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ∥ 𝑎 ↔ ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) = ( 0g ‘ 𝐻 ) ) ) |
| 197 |
193 194 195 196
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ∥ 𝑎 ↔ ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) = ( 0g ‘ 𝐻 ) ) ) |
| 198 |
71
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ∈ ℕ ) |
| 199 |
|
root1eq1 |
⊢ ( ( ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ∈ ℕ ∧ 𝑎 ∈ ℤ ) → ( ( ( - 1 ↑𝑐 ( 2 / ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ) ) ↑ 𝑎 ) = 1 ↔ ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ∥ 𝑎 ) ) |
| 200 |
198 195 199
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( ( ( - 1 ↑𝑐 ( 2 / ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ) ) ↑ 𝑎 ) = 1 ↔ ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ∥ 𝑎 ) ) |
| 201 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) |
| 202 |
5 164
|
eqtrid |
⊢ ( 𝜑 → 1 = ( 0g ‘ 𝐻 ) ) |
| 203 |
202
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → 1 = ( 0g ‘ 𝐻 ) ) |
| 204 |
201 203
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = 1 ↔ ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) = ( 0g ‘ 𝐻 ) ) ) |
| 205 |
197 200 204
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( ( ( - 1 ↑𝑐 ( 2 / ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ) ) ↑ 𝑎 ) = 1 ↔ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = 1 ) ) |
| 206 |
205
|
necon3bid |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( ( ( - 1 ↑𝑐 ( 2 / ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ) ) ↑ 𝑎 ) ≠ 1 ↔ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) ≠ 1 ) ) |
| 207 |
192 206
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( ( - 1 ↑𝑐 ( 2 / ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ) ) ↑ 𝑎 ) ≠ 1 ) |
| 208 |
191 207
|
eqnetrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( 𝑋 ‘ 𝐴 ) ≠ 1 ) |
| 209 |
208
|
rexlimdvaa |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) → ( ∃ 𝑎 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) → ( 𝑋 ‘ 𝐴 ) ≠ 1 ) ) |
| 210 |
12 209
|
mpdan |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) → ( 𝑋 ‘ 𝐴 ) ≠ 1 ) ) |
| 211 |
188 210
|
mpd |
⊢ ( 𝜑 → ( 𝑋 ‘ 𝐴 ) ≠ 1 ) |
| 212 |
185 211
|
eqnetrd |
⊢ ( 𝜑 → ( ( 𝑣 ∈ 𝐵 ↦ if ( 𝑣 ∈ 𝑈 , ( 𝑋 ‘ 𝑣 ) , 0 ) ) ‘ 𝐴 ) ≠ 1 ) |
| 213 |
|
fveq1 |
⊢ ( 𝑥 = ( 𝑣 ∈ 𝐵 ↦ if ( 𝑣 ∈ 𝑈 , ( 𝑋 ‘ 𝑣 ) , 0 ) ) → ( 𝑥 ‘ 𝐴 ) = ( ( 𝑣 ∈ 𝐵 ↦ if ( 𝑣 ∈ 𝑈 , ( 𝑋 ‘ 𝑣 ) , 0 ) ) ‘ 𝐴 ) ) |
| 214 |
213
|
neeq1d |
⊢ ( 𝑥 = ( 𝑣 ∈ 𝐵 ↦ if ( 𝑣 ∈ 𝑈 , ( 𝑋 ‘ 𝑣 ) , 0 ) ) → ( ( 𝑥 ‘ 𝐴 ) ≠ 1 ↔ ( ( 𝑣 ∈ 𝐵 ↦ if ( 𝑣 ∈ 𝑈 , ( 𝑋 ‘ 𝑣 ) , 0 ) ) ‘ 𝐴 ) ≠ 1 ) ) |
| 215 |
214
|
rspcev |
⊢ ( ( ( 𝑣 ∈ 𝐵 ↦ if ( 𝑣 ∈ 𝑈 , ( 𝑋 ‘ 𝑣 ) , 0 ) ) ∈ 𝐷 ∧ ( ( 𝑣 ∈ 𝐵 ↦ if ( 𝑣 ∈ 𝑈 , ( 𝑋 ‘ 𝑣 ) , 0 ) ) ‘ 𝐴 ) ≠ 1 ) → ∃ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) ≠ 1 ) |
| 216 |
173 212 215
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) ≠ 1 ) |