Step |
Hyp |
Ref |
Expression |
1 |
|
dchrpt.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
2 |
|
dchrpt.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
3 |
|
dchrpt.d |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
4 |
|
dchrpt.b |
⊢ 𝐵 = ( Base ‘ 𝑍 ) |
5 |
|
dchrpt.1 |
⊢ 1 = ( 1r ‘ 𝑍 ) |
6 |
|
dchrpt.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
7 |
|
dchrpt.n1 |
⊢ ( 𝜑 → 𝐴 ≠ 1 ) |
8 |
|
dchrpt.u |
⊢ 𝑈 = ( Unit ‘ 𝑍 ) |
9 |
|
dchrpt.h |
⊢ 𝐻 = ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) |
10 |
|
dchrpt.m |
⊢ · = ( .g ‘ 𝐻 ) |
11 |
|
dchrpt.s |
⊢ 𝑆 = ( 𝑘 ∈ dom 𝑊 ↦ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · ( 𝑊 ‘ 𝑘 ) ) ) ) |
12 |
|
dchrpt.au |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
13 |
|
dchrpt.w |
⊢ ( 𝜑 → 𝑊 ∈ Word 𝑈 ) |
14 |
|
dchrpt.2 |
⊢ ( 𝜑 → 𝐻 dom DProd 𝑆 ) |
15 |
|
dchrpt.3 |
⊢ ( 𝜑 → ( 𝐻 DProd 𝑆 ) = 𝑈 ) |
16 |
|
dchrpt.p |
⊢ 𝑃 = ( 𝐻 dProj 𝑆 ) |
17 |
|
dchrpt.o |
⊢ 𝑂 = ( od ‘ 𝐻 ) |
18 |
|
dchrpt.t |
⊢ 𝑇 = ( - 1 ↑𝑐 ( 2 / ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ) ) |
19 |
|
dchrpt.i |
⊢ ( 𝜑 → 𝐼 ∈ dom 𝑊 ) |
20 |
|
dchrpt.4 |
⊢ ( 𝜑 → ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) ≠ 1 ) |
21 |
|
dchrpt.5 |
⊢ 𝑋 = ( 𝑢 ∈ 𝑈 ↦ ( ℩ ℎ ∃ 𝑚 ∈ ℤ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑢 ) = ( 𝑚 · ( 𝑊 ‘ 𝐼 ) ) ∧ ℎ = ( 𝑇 ↑ 𝑚 ) ) ) ) |
22 |
|
fveq2 |
⊢ ( 𝑣 = 𝑥 → ( 𝑋 ‘ 𝑣 ) = ( 𝑋 ‘ 𝑥 ) ) |
23 |
|
fveq2 |
⊢ ( 𝑣 = 𝑦 → ( 𝑋 ‘ 𝑣 ) = ( 𝑋 ‘ 𝑦 ) ) |
24 |
|
fveq2 |
⊢ ( 𝑣 = ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) → ( 𝑋 ‘ 𝑣 ) = ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) ) |
25 |
|
fveq2 |
⊢ ( 𝑣 = ( 1r ‘ 𝑍 ) → ( 𝑋 ‘ 𝑣 ) = ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) ) |
26 |
|
zex |
⊢ ℤ ∈ V |
27 |
26
|
mptex |
⊢ ( 𝑛 ∈ ℤ ↦ ( 𝑛 · ( 𝑊 ‘ 𝑘 ) ) ) ∈ V |
28 |
27
|
rnex |
⊢ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · ( 𝑊 ‘ 𝑘 ) ) ) ∈ V |
29 |
28 11
|
dmmpti |
⊢ dom 𝑆 = dom 𝑊 |
30 |
29
|
a1i |
⊢ ( 𝜑 → dom 𝑆 = dom 𝑊 ) |
31 |
14 30 16 19
|
dpjf |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝐼 ) : ( 𝐻 DProd 𝑆 ) ⟶ ( 𝑆 ‘ 𝐼 ) ) |
32 |
15
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑃 ‘ 𝐼 ) : ( 𝐻 DProd 𝑆 ) ⟶ ( 𝑆 ‘ 𝐼 ) ↔ ( 𝑃 ‘ 𝐼 ) : 𝑈 ⟶ ( 𝑆 ‘ 𝐼 ) ) ) |
33 |
31 32
|
mpbid |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝐼 ) : 𝑈 ⟶ ( 𝑆 ‘ 𝐼 ) ) |
34 |
33
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) → ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) ∈ ( 𝑆 ‘ 𝐼 ) ) |
35 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) → 𝐼 ∈ dom 𝑊 ) |
36 |
|
oveq1 |
⊢ ( 𝑛 = 𝑎 → ( 𝑛 · ( 𝑊 ‘ 𝑘 ) ) = ( 𝑎 · ( 𝑊 ‘ 𝑘 ) ) ) |
37 |
36
|
cbvmptv |
⊢ ( 𝑛 ∈ ℤ ↦ ( 𝑛 · ( 𝑊 ‘ 𝑘 ) ) ) = ( 𝑎 ∈ ℤ ↦ ( 𝑎 · ( 𝑊 ‘ 𝑘 ) ) ) |
38 |
|
fveq2 |
⊢ ( 𝑘 = 𝐼 → ( 𝑊 ‘ 𝑘 ) = ( 𝑊 ‘ 𝐼 ) ) |
39 |
38
|
oveq2d |
⊢ ( 𝑘 = 𝐼 → ( 𝑎 · ( 𝑊 ‘ 𝑘 ) ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) |
40 |
39
|
mpteq2dv |
⊢ ( 𝑘 = 𝐼 → ( 𝑎 ∈ ℤ ↦ ( 𝑎 · ( 𝑊 ‘ 𝑘 ) ) ) = ( 𝑎 ∈ ℤ ↦ ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) |
41 |
37 40
|
syl5eq |
⊢ ( 𝑘 = 𝐼 → ( 𝑛 ∈ ℤ ↦ ( 𝑛 · ( 𝑊 ‘ 𝑘 ) ) ) = ( 𝑎 ∈ ℤ ↦ ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) |
42 |
41
|
rneqd |
⊢ ( 𝑘 = 𝐼 → ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · ( 𝑊 ‘ 𝑘 ) ) ) = ran ( 𝑎 ∈ ℤ ↦ ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) |
43 |
42 11 28
|
fvmpt3i |
⊢ ( 𝐼 ∈ dom 𝑊 → ( 𝑆 ‘ 𝐼 ) = ran ( 𝑎 ∈ ℤ ↦ ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) |
44 |
35 43
|
syl |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) → ( 𝑆 ‘ 𝐼 ) = ran ( 𝑎 ∈ ℤ ↦ ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) |
45 |
34 44
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) → ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) ∈ ran ( 𝑎 ∈ ℤ ↦ ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) |
46 |
|
eqid |
⊢ ( 𝑎 ∈ ℤ ↦ ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) = ( 𝑎 ∈ ℤ ↦ ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) |
47 |
|
ovex |
⊢ ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∈ V |
48 |
46 47
|
elrnmpti |
⊢ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) ∈ ran ( 𝑎 ∈ ℤ ↦ ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ↔ ∃ 𝑎 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) |
49 |
45 48
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) → ∃ 𝑎 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) |
50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
|
dchrptlem1 |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( 𝑋 ‘ 𝑣 ) = ( 𝑇 ↑ 𝑎 ) ) |
51 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
52 |
|
2re |
⊢ 2 ∈ ℝ |
53 |
6
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
54 |
2
|
zncrng |
⊢ ( 𝑁 ∈ ℕ0 → 𝑍 ∈ CRing ) |
55 |
|
crngring |
⊢ ( 𝑍 ∈ CRing → 𝑍 ∈ Ring ) |
56 |
53 54 55
|
3syl |
⊢ ( 𝜑 → 𝑍 ∈ Ring ) |
57 |
8 9
|
unitgrp |
⊢ ( 𝑍 ∈ Ring → 𝐻 ∈ Grp ) |
58 |
56 57
|
syl |
⊢ ( 𝜑 → 𝐻 ∈ Grp ) |
59 |
2 4
|
znfi |
⊢ ( 𝑁 ∈ ℕ → 𝐵 ∈ Fin ) |
60 |
6 59
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
61 |
4 8
|
unitss |
⊢ 𝑈 ⊆ 𝐵 |
62 |
|
ssfi |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝑈 ⊆ 𝐵 ) → 𝑈 ∈ Fin ) |
63 |
60 61 62
|
sylancl |
⊢ ( 𝜑 → 𝑈 ∈ Fin ) |
64 |
|
wrdf |
⊢ ( 𝑊 ∈ Word 𝑈 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑈 ) |
65 |
13 64
|
syl |
⊢ ( 𝜑 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑈 ) |
66 |
65
|
fdmd |
⊢ ( 𝜑 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
67 |
19 66
|
eleqtrd |
⊢ ( 𝜑 → 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
68 |
65 67
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑊 ‘ 𝐼 ) ∈ 𝑈 ) |
69 |
8 9
|
unitgrpbas |
⊢ 𝑈 = ( Base ‘ 𝐻 ) |
70 |
69 17
|
odcl2 |
⊢ ( ( 𝐻 ∈ Grp ∧ 𝑈 ∈ Fin ∧ ( 𝑊 ‘ 𝐼 ) ∈ 𝑈 ) → ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ∈ ℕ ) |
71 |
58 63 68 70
|
syl3anc |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ∈ ℕ ) |
72 |
|
nndivre |
⊢ ( ( 2 ∈ ℝ ∧ ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ∈ ℕ ) → ( 2 / ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ) ∈ ℝ ) |
73 |
52 71 72
|
sylancr |
⊢ ( 𝜑 → ( 2 / ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ) ∈ ℝ ) |
74 |
73
|
recnd |
⊢ ( 𝜑 → ( 2 / ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ) ∈ ℂ ) |
75 |
|
cxpcl |
⊢ ( ( - 1 ∈ ℂ ∧ ( 2 / ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ) ∈ ℂ ) → ( - 1 ↑𝑐 ( 2 / ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ) ) ∈ ℂ ) |
76 |
51 74 75
|
sylancr |
⊢ ( 𝜑 → ( - 1 ↑𝑐 ( 2 / ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ) ) ∈ ℂ ) |
77 |
18 76
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
78 |
77
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → 𝑇 ∈ ℂ ) |
79 |
51
|
a1i |
⊢ ( 𝜑 → - 1 ∈ ℂ ) |
80 |
|
neg1ne0 |
⊢ - 1 ≠ 0 |
81 |
80
|
a1i |
⊢ ( 𝜑 → - 1 ≠ 0 ) |
82 |
79 81 74
|
cxpne0d |
⊢ ( 𝜑 → ( - 1 ↑𝑐 ( 2 / ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ) ) ≠ 0 ) |
83 |
18
|
neeq1i |
⊢ ( 𝑇 ≠ 0 ↔ ( - 1 ↑𝑐 ( 2 / ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ) ) ≠ 0 ) |
84 |
82 83
|
sylibr |
⊢ ( 𝜑 → 𝑇 ≠ 0 ) |
85 |
84
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → 𝑇 ≠ 0 ) |
86 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → 𝑎 ∈ ℤ ) |
87 |
78 85 86
|
expclzd |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( 𝑇 ↑ 𝑎 ) ∈ ℂ ) |
88 |
50 87
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( 𝑋 ‘ 𝑣 ) ∈ ℂ ) |
89 |
49 88
|
rexlimddv |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) → ( 𝑋 ‘ 𝑣 ) ∈ ℂ ) |
90 |
|
fveqeq2 |
⊢ ( 𝑣 = 𝑥 → ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ↔ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) |
91 |
90
|
rexbidv |
⊢ ( 𝑣 = 𝑥 → ( ∃ 𝑎 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ↔ ∃ 𝑎 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) |
92 |
49
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) |
93 |
92
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) |
94 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑥 ∈ 𝑈 ) |
95 |
91 93 94
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ∃ 𝑎 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) |
96 |
|
fveqeq2 |
⊢ ( 𝑣 = 𝑦 → ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ↔ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) |
97 |
96
|
rexbidv |
⊢ ( 𝑣 = 𝑦 → ( ∃ 𝑎 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ↔ ∃ 𝑎 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) |
98 |
|
oveq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) |
99 |
98
|
eqeq2d |
⊢ ( 𝑎 = 𝑏 → ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ↔ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) |
100 |
99
|
cbvrexvw |
⊢ ( ∃ 𝑎 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ↔ ∃ 𝑏 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) |
101 |
97 100
|
bitrdi |
⊢ ( 𝑣 = 𝑦 → ( ∃ 𝑎 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ↔ ∃ 𝑏 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) |
102 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑦 ∈ 𝑈 ) |
103 |
101 93 102
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ∃ 𝑏 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) |
104 |
|
reeanv |
⊢ ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ↔ ( ∃ 𝑎 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ∃ 𝑏 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) |
105 |
77
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → 𝑇 ∈ ℂ ) |
106 |
84
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → 𝑇 ≠ 0 ) |
107 |
|
simprll |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → 𝑎 ∈ ℤ ) |
108 |
|
simprlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → 𝑏 ∈ ℤ ) |
109 |
|
expaddz |
⊢ ( ( ( 𝑇 ∈ ℂ ∧ 𝑇 ≠ 0 ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝑇 ↑ ( 𝑎 + 𝑏 ) ) = ( ( 𝑇 ↑ 𝑎 ) · ( 𝑇 ↑ 𝑏 ) ) ) |
110 |
105 106 107 108 109
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → ( 𝑇 ↑ ( 𝑎 + 𝑏 ) ) = ( ( 𝑇 ↑ 𝑎 ) · ( 𝑇 ↑ 𝑏 ) ) ) |
111 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → 𝜑 ) |
112 |
56
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → 𝑍 ∈ Ring ) |
113 |
94
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → 𝑥 ∈ 𝑈 ) |
114 |
102
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → 𝑦 ∈ 𝑈 ) |
115 |
|
eqid |
⊢ ( .r ‘ 𝑍 ) = ( .r ‘ 𝑍 ) |
116 |
8 115
|
unitmulcl |
⊢ ( ( 𝑍 ∈ Ring ∧ 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) → ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ∈ 𝑈 ) |
117 |
112 113 114 116
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ∈ 𝑈 ) |
118 |
107 108
|
zaddcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → ( 𝑎 + 𝑏 ) ∈ ℤ ) |
119 |
|
simprrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) |
120 |
|
simprrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) |
121 |
119 120
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) ( .r ‘ 𝑍 ) ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) ) = ( ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ( .r ‘ 𝑍 ) ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) |
122 |
14 30 16 19
|
dpjghm |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝐼 ) ∈ ( ( 𝐻 ↾s ( 𝐻 DProd 𝑆 ) ) GrpHom 𝐻 ) ) |
123 |
15
|
oveq2d |
⊢ ( 𝜑 → ( 𝐻 ↾s ( 𝐻 DProd 𝑆 ) ) = ( 𝐻 ↾s 𝑈 ) ) |
124 |
9
|
ovexi |
⊢ 𝐻 ∈ V |
125 |
69
|
ressid |
⊢ ( 𝐻 ∈ V → ( 𝐻 ↾s 𝑈 ) = 𝐻 ) |
126 |
124 125
|
ax-mp |
⊢ ( 𝐻 ↾s 𝑈 ) = 𝐻 |
127 |
123 126
|
eqtrdi |
⊢ ( 𝜑 → ( 𝐻 ↾s ( 𝐻 DProd 𝑆 ) ) = 𝐻 ) |
128 |
127
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐻 ↾s ( 𝐻 DProd 𝑆 ) ) GrpHom 𝐻 ) = ( 𝐻 GrpHom 𝐻 ) ) |
129 |
122 128
|
eleqtrd |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝐼 ) ∈ ( 𝐻 GrpHom 𝐻 ) ) |
130 |
129
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → ( 𝑃 ‘ 𝐼 ) ∈ ( 𝐻 GrpHom 𝐻 ) ) |
131 |
8
|
fvexi |
⊢ 𝑈 ∈ V |
132 |
|
eqid |
⊢ ( mulGrp ‘ 𝑍 ) = ( mulGrp ‘ 𝑍 ) |
133 |
132 115
|
mgpplusg |
⊢ ( .r ‘ 𝑍 ) = ( +g ‘ ( mulGrp ‘ 𝑍 ) ) |
134 |
9 133
|
ressplusg |
⊢ ( 𝑈 ∈ V → ( .r ‘ 𝑍 ) = ( +g ‘ 𝐻 ) ) |
135 |
131 134
|
ax-mp |
⊢ ( .r ‘ 𝑍 ) = ( +g ‘ 𝐻 ) |
136 |
69 135 135
|
ghmlin |
⊢ ( ( ( 𝑃 ‘ 𝐼 ) ∈ ( 𝐻 GrpHom 𝐻 ) ∧ 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) → ( ( 𝑃 ‘ 𝐼 ) ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) ( .r ‘ 𝑍 ) ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) ) ) |
137 |
130 113 114 136
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → ( ( 𝑃 ‘ 𝐼 ) ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) ( .r ‘ 𝑍 ) ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) ) ) |
138 |
58
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → 𝐻 ∈ Grp ) |
139 |
68
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → ( 𝑊 ‘ 𝐼 ) ∈ 𝑈 ) |
140 |
69 10 135
|
mulgdir |
⊢ ( ( 𝐻 ∈ Grp ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ ( 𝑊 ‘ 𝐼 ) ∈ 𝑈 ) ) → ( ( 𝑎 + 𝑏 ) · ( 𝑊 ‘ 𝐼 ) ) = ( ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ( .r ‘ 𝑍 ) ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) |
141 |
138 107 108 139 140
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → ( ( 𝑎 + 𝑏 ) · ( 𝑊 ‘ 𝐼 ) ) = ( ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ( .r ‘ 𝑍 ) ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) |
142 |
121 137 141
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → ( ( 𝑃 ‘ 𝐼 ) ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑎 + 𝑏 ) · ( 𝑊 ‘ 𝐼 ) ) ) |
143 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
|
dchrptlem1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ∈ 𝑈 ) ∧ ( ( 𝑎 + 𝑏 ) ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑎 + 𝑏 ) · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( 𝑇 ↑ ( 𝑎 + 𝑏 ) ) ) |
144 |
111 117 118 142 143
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( 𝑇 ↑ ( 𝑎 + 𝑏 ) ) ) |
145 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
|
dchrptlem1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( 𝑋 ‘ 𝑥 ) = ( 𝑇 ↑ 𝑎 ) ) |
146 |
111 113 107 119 145
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → ( 𝑋 ‘ 𝑥 ) = ( 𝑇 ↑ 𝑎 ) ) |
147 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
|
dchrptlem1 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑈 ) ∧ ( 𝑏 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( 𝑋 ‘ 𝑦 ) = ( 𝑇 ↑ 𝑏 ) ) |
148 |
111 114 108 120 147
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → ( 𝑋 ‘ 𝑦 ) = ( 𝑇 ↑ 𝑏 ) ) |
149 |
146 148
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) = ( ( 𝑇 ↑ 𝑎 ) · ( 𝑇 ↑ 𝑏 ) ) ) |
150 |
110 144 149
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) ) ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) |
151 |
150
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) ) |
152 |
151
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) ) |
153 |
104 152
|
syl5bir |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ( ∃ 𝑎 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑥 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ∧ ∃ 𝑏 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑦 ) = ( 𝑏 · ( 𝑊 ‘ 𝐼 ) ) ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) ) |
154 |
95 103 153
|
mp2and |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) |
155 |
|
id |
⊢ ( 𝜑 → 𝜑 ) |
156 |
|
eqid |
⊢ ( 1r ‘ 𝑍 ) = ( 1r ‘ 𝑍 ) |
157 |
8 156
|
1unit |
⊢ ( 𝑍 ∈ Ring → ( 1r ‘ 𝑍 ) ∈ 𝑈 ) |
158 |
56 157
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑍 ) ∈ 𝑈 ) |
159 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
160 |
|
eqid |
⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) |
161 |
160 160
|
ghmid |
⊢ ( ( 𝑃 ‘ 𝐼 ) ∈ ( 𝐻 GrpHom 𝐻 ) → ( ( 𝑃 ‘ 𝐼 ) ‘ ( 0g ‘ 𝐻 ) ) = ( 0g ‘ 𝐻 ) ) |
162 |
129 161
|
syl |
⊢ ( 𝜑 → ( ( 𝑃 ‘ 𝐼 ) ‘ ( 0g ‘ 𝐻 ) ) = ( 0g ‘ 𝐻 ) ) |
163 |
8 9 156
|
unitgrpid |
⊢ ( 𝑍 ∈ Ring → ( 1r ‘ 𝑍 ) = ( 0g ‘ 𝐻 ) ) |
164 |
56 163
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑍 ) = ( 0g ‘ 𝐻 ) ) |
165 |
164
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝑃 ‘ 𝐼 ) ‘ ( 1r ‘ 𝑍 ) ) = ( ( 𝑃 ‘ 𝐼 ) ‘ ( 0g ‘ 𝐻 ) ) ) |
166 |
69 160 10
|
mulg0 |
⊢ ( ( 𝑊 ‘ 𝐼 ) ∈ 𝑈 → ( 0 · ( 𝑊 ‘ 𝐼 ) ) = ( 0g ‘ 𝐻 ) ) |
167 |
68 166
|
syl |
⊢ ( 𝜑 → ( 0 · ( 𝑊 ‘ 𝐼 ) ) = ( 0g ‘ 𝐻 ) ) |
168 |
162 165 167
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝑃 ‘ 𝐼 ) ‘ ( 1r ‘ 𝑍 ) ) = ( 0 · ( 𝑊 ‘ 𝐼 ) ) ) |
169 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
|
dchrptlem1 |
⊢ ( ( ( 𝜑 ∧ ( 1r ‘ 𝑍 ) ∈ 𝑈 ) ∧ ( 0 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ ( 1r ‘ 𝑍 ) ) = ( 0 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = ( 𝑇 ↑ 0 ) ) |
170 |
155 158 159 168 169
|
syl22anc |
⊢ ( 𝜑 → ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = ( 𝑇 ↑ 0 ) ) |
171 |
77
|
exp0d |
⊢ ( 𝜑 → ( 𝑇 ↑ 0 ) = 1 ) |
172 |
170 171
|
eqtrd |
⊢ ( 𝜑 → ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ) |
173 |
1 2 4 8 6 3 22 23 24 25 89 154 172
|
dchrelbasd |
⊢ ( 𝜑 → ( 𝑣 ∈ 𝐵 ↦ if ( 𝑣 ∈ 𝑈 , ( 𝑋 ‘ 𝑣 ) , 0 ) ) ∈ 𝐷 ) |
174 |
61 12
|
sselid |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
175 |
|
eleq1 |
⊢ ( 𝑣 = 𝐴 → ( 𝑣 ∈ 𝑈 ↔ 𝐴 ∈ 𝑈 ) ) |
176 |
|
fveq2 |
⊢ ( 𝑣 = 𝐴 → ( 𝑋 ‘ 𝑣 ) = ( 𝑋 ‘ 𝐴 ) ) |
177 |
175 176
|
ifbieq1d |
⊢ ( 𝑣 = 𝐴 → if ( 𝑣 ∈ 𝑈 , ( 𝑋 ‘ 𝑣 ) , 0 ) = if ( 𝐴 ∈ 𝑈 , ( 𝑋 ‘ 𝐴 ) , 0 ) ) |
178 |
|
eqid |
⊢ ( 𝑣 ∈ 𝐵 ↦ if ( 𝑣 ∈ 𝑈 , ( 𝑋 ‘ 𝑣 ) , 0 ) ) = ( 𝑣 ∈ 𝐵 ↦ if ( 𝑣 ∈ 𝑈 , ( 𝑋 ‘ 𝑣 ) , 0 ) ) |
179 |
|
fvex |
⊢ ( 𝑋 ‘ 𝑣 ) ∈ V |
180 |
|
c0ex |
⊢ 0 ∈ V |
181 |
179 180
|
ifex |
⊢ if ( 𝑣 ∈ 𝑈 , ( 𝑋 ‘ 𝑣 ) , 0 ) ∈ V |
182 |
177 178 181
|
fvmpt3i |
⊢ ( 𝐴 ∈ 𝐵 → ( ( 𝑣 ∈ 𝐵 ↦ if ( 𝑣 ∈ 𝑈 , ( 𝑋 ‘ 𝑣 ) , 0 ) ) ‘ 𝐴 ) = if ( 𝐴 ∈ 𝑈 , ( 𝑋 ‘ 𝐴 ) , 0 ) ) |
183 |
174 182
|
syl |
⊢ ( 𝜑 → ( ( 𝑣 ∈ 𝐵 ↦ if ( 𝑣 ∈ 𝑈 , ( 𝑋 ‘ 𝑣 ) , 0 ) ) ‘ 𝐴 ) = if ( 𝐴 ∈ 𝑈 , ( 𝑋 ‘ 𝐴 ) , 0 ) ) |
184 |
12
|
iftrued |
⊢ ( 𝜑 → if ( 𝐴 ∈ 𝑈 , ( 𝑋 ‘ 𝐴 ) , 0 ) = ( 𝑋 ‘ 𝐴 ) ) |
185 |
183 184
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑣 ∈ 𝐵 ↦ if ( 𝑣 ∈ 𝑈 , ( 𝑋 ‘ 𝑣 ) , 0 ) ) ‘ 𝐴 ) = ( 𝑋 ‘ 𝐴 ) ) |
186 |
|
fveqeq2 |
⊢ ( 𝑣 = 𝐴 → ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ↔ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) |
187 |
186
|
rexbidv |
⊢ ( 𝑣 = 𝐴 → ( ∃ 𝑎 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝑣 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ↔ ∃ 𝑎 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) |
188 |
187 92 12
|
rspcdva |
⊢ ( 𝜑 → ∃ 𝑎 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) |
189 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
|
dchrptlem1 |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( 𝑋 ‘ 𝐴 ) = ( 𝑇 ↑ 𝑎 ) ) |
190 |
18
|
oveq1i |
⊢ ( 𝑇 ↑ 𝑎 ) = ( ( - 1 ↑𝑐 ( 2 / ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ) ) ↑ 𝑎 ) |
191 |
189 190
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( 𝑋 ‘ 𝐴 ) = ( ( - 1 ↑𝑐 ( 2 / ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ) ) ↑ 𝑎 ) ) |
192 |
20
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) ≠ 1 ) |
193 |
58
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → 𝐻 ∈ Grp ) |
194 |
68
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) ∈ 𝑈 ) |
195 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → 𝑎 ∈ ℤ ) |
196 |
69 17 10 160
|
oddvds |
⊢ ( ( 𝐻 ∈ Grp ∧ ( 𝑊 ‘ 𝐼 ) ∈ 𝑈 ∧ 𝑎 ∈ ℤ ) → ( ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ∥ 𝑎 ↔ ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) = ( 0g ‘ 𝐻 ) ) ) |
197 |
193 194 195 196
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ∥ 𝑎 ↔ ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) = ( 0g ‘ 𝐻 ) ) ) |
198 |
71
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ∈ ℕ ) |
199 |
|
root1eq1 |
⊢ ( ( ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ∈ ℕ ∧ 𝑎 ∈ ℤ ) → ( ( ( - 1 ↑𝑐 ( 2 / ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ) ) ↑ 𝑎 ) = 1 ↔ ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ∥ 𝑎 ) ) |
200 |
198 195 199
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( ( ( - 1 ↑𝑐 ( 2 / ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ) ) ↑ 𝑎 ) = 1 ↔ ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ∥ 𝑎 ) ) |
201 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) |
202 |
5 164
|
syl5eq |
⊢ ( 𝜑 → 1 = ( 0g ‘ 𝐻 ) ) |
203 |
202
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → 1 = ( 0g ‘ 𝐻 ) ) |
204 |
201 203
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = 1 ↔ ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) = ( 0g ‘ 𝐻 ) ) ) |
205 |
197 200 204
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( ( ( - 1 ↑𝑐 ( 2 / ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ) ) ↑ 𝑎 ) = 1 ↔ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = 1 ) ) |
206 |
205
|
necon3bid |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( ( ( - 1 ↑𝑐 ( 2 / ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ) ) ↑ 𝑎 ) ≠ 1 ↔ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) ≠ 1 ) ) |
207 |
192 206
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( ( - 1 ↑𝑐 ( 2 / ( 𝑂 ‘ ( 𝑊 ‘ 𝐼 ) ) ) ) ↑ 𝑎 ) ≠ 1 ) |
208 |
191 207
|
eqnetrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ℤ ∧ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) ) ) → ( 𝑋 ‘ 𝐴 ) ≠ 1 ) |
209 |
208
|
rexlimdvaa |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) → ( ∃ 𝑎 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) → ( 𝑋 ‘ 𝐴 ) ≠ 1 ) ) |
210 |
12 209
|
mpdan |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ ℤ ( ( 𝑃 ‘ 𝐼 ) ‘ 𝐴 ) = ( 𝑎 · ( 𝑊 ‘ 𝐼 ) ) → ( 𝑋 ‘ 𝐴 ) ≠ 1 ) ) |
211 |
188 210
|
mpd |
⊢ ( 𝜑 → ( 𝑋 ‘ 𝐴 ) ≠ 1 ) |
212 |
185 211
|
eqnetrd |
⊢ ( 𝜑 → ( ( 𝑣 ∈ 𝐵 ↦ if ( 𝑣 ∈ 𝑈 , ( 𝑋 ‘ 𝑣 ) , 0 ) ) ‘ 𝐴 ) ≠ 1 ) |
213 |
|
fveq1 |
⊢ ( 𝑥 = ( 𝑣 ∈ 𝐵 ↦ if ( 𝑣 ∈ 𝑈 , ( 𝑋 ‘ 𝑣 ) , 0 ) ) → ( 𝑥 ‘ 𝐴 ) = ( ( 𝑣 ∈ 𝐵 ↦ if ( 𝑣 ∈ 𝑈 , ( 𝑋 ‘ 𝑣 ) , 0 ) ) ‘ 𝐴 ) ) |
214 |
213
|
neeq1d |
⊢ ( 𝑥 = ( 𝑣 ∈ 𝐵 ↦ if ( 𝑣 ∈ 𝑈 , ( 𝑋 ‘ 𝑣 ) , 0 ) ) → ( ( 𝑥 ‘ 𝐴 ) ≠ 1 ↔ ( ( 𝑣 ∈ 𝐵 ↦ if ( 𝑣 ∈ 𝑈 , ( 𝑋 ‘ 𝑣 ) , 0 ) ) ‘ 𝐴 ) ≠ 1 ) ) |
215 |
214
|
rspcev |
⊢ ( ( ( 𝑣 ∈ 𝐵 ↦ if ( 𝑣 ∈ 𝑈 , ( 𝑋 ‘ 𝑣 ) , 0 ) ) ∈ 𝐷 ∧ ( ( 𝑣 ∈ 𝐵 ↦ if ( 𝑣 ∈ 𝑈 , ( 𝑋 ‘ 𝑣 ) , 0 ) ) ‘ 𝐴 ) ≠ 1 ) → ∃ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) ≠ 1 ) |
216 |
173 212 215
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) ≠ 1 ) |