| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dpjfval.1 |
⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) |
| 2 |
|
dpjfval.2 |
⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) |
| 3 |
|
dpjfval.p |
⊢ 𝑃 = ( 𝐺 dProj 𝑆 ) |
| 4 |
|
dpjf.3 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) |
| 5 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 6 |
|
eqid |
⊢ ( LSSum ‘ 𝐺 ) = ( LSSum ‘ 𝐺 ) |
| 7 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 8 |
|
eqid |
⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) |
| 9 |
1 2
|
dprdf2 |
⊢ ( 𝜑 → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 10 |
9 4
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑋 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 11 |
|
difssd |
⊢ ( 𝜑 → ( 𝐼 ∖ { 𝑋 } ) ⊆ 𝐼 ) |
| 12 |
1 2 11
|
dprdres |
⊢ ( 𝜑 → ( 𝐺 dom DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑋 } ) ) ∧ ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑋 } ) ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) ) |
| 13 |
12
|
simpld |
⊢ ( 𝜑 → 𝐺 dom DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑋 } ) ) ) |
| 14 |
|
dprdsubg |
⊢ ( 𝐺 dom DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑋 } ) ) → ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑋 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 15 |
13 14
|
syl |
⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑋 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 16 |
1 2 4 7
|
dpjdisj |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑋 ) ∩ ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑋 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) |
| 17 |
1 2 4 8
|
dpjcntz |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑋 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑋 } ) ) ) ) ) |
| 18 |
|
eqid |
⊢ ( proj1 ‘ 𝐺 ) = ( proj1 ‘ 𝐺 ) |
| 19 |
5 6 7 8 10 15 16 17 18
|
pj1f |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑋 ) ( proj1 ‘ 𝐺 ) ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑋 } ) ) ) ) : ( ( 𝑆 ‘ 𝑋 ) ( LSSum ‘ 𝐺 ) ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑋 } ) ) ) ) ⟶ ( 𝑆 ‘ 𝑋 ) ) |
| 20 |
1 2 3 18 4
|
dpjval |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝑋 ) = ( ( 𝑆 ‘ 𝑋 ) ( proj1 ‘ 𝐺 ) ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑋 } ) ) ) ) ) |
| 21 |
1 2 4 6
|
dpjlsm |
⊢ ( 𝜑 → ( 𝐺 DProd 𝑆 ) = ( ( 𝑆 ‘ 𝑋 ) ( LSSum ‘ 𝐺 ) ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑋 } ) ) ) ) ) |
| 22 |
20 21
|
feq12d |
⊢ ( 𝜑 → ( ( 𝑃 ‘ 𝑋 ) : ( 𝐺 DProd 𝑆 ) ⟶ ( 𝑆 ‘ 𝑋 ) ↔ ( ( 𝑆 ‘ 𝑋 ) ( proj1 ‘ 𝐺 ) ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑋 } ) ) ) ) : ( ( 𝑆 ‘ 𝑋 ) ( LSSum ‘ 𝐺 ) ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑋 } ) ) ) ) ⟶ ( 𝑆 ‘ 𝑋 ) ) ) |
| 23 |
19 22
|
mpbird |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝑋 ) : ( 𝐺 DProd 𝑆 ) ⟶ ( 𝑆 ‘ 𝑋 ) ) |