Metamath Proof Explorer


Theorem dpjdisj

Description: The two subgroups that appear in dpjval are disjoint. (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses dpjfval.1 ( 𝜑𝐺 dom DProd 𝑆 )
dpjfval.2 ( 𝜑 → dom 𝑆 = 𝐼 )
dpjlem.3 ( 𝜑𝑋𝐼 )
dpjdisj.0 0 = ( 0g𝐺 )
Assertion dpjdisj ( 𝜑 → ( ( 𝑆𝑋 ) ∩ ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑋 } ) ) ) ) = { 0 } )

Proof

Step Hyp Ref Expression
1 dpjfval.1 ( 𝜑𝐺 dom DProd 𝑆 )
2 dpjfval.2 ( 𝜑 → dom 𝑆 = 𝐼 )
3 dpjlem.3 ( 𝜑𝑋𝐼 )
4 dpjdisj.0 0 = ( 0g𝐺 )
5 1 2 3 dpjlem ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ { 𝑋 } ) ) = ( 𝑆𝑋 ) )
6 5 ineq1d ( 𝜑 → ( ( 𝐺 DProd ( 𝑆 ↾ { 𝑋 } ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑋 } ) ) ) ) = ( ( 𝑆𝑋 ) ∩ ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑋 } ) ) ) ) )
7 1 2 dprdf2 ( 𝜑𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) )
8 disjdif ( { 𝑋 } ∩ ( 𝐼 ∖ { 𝑋 } ) ) = ∅
9 8 a1i ( 𝜑 → ( { 𝑋 } ∩ ( 𝐼 ∖ { 𝑋 } ) ) = ∅ )
10 undif2 ( { 𝑋 } ∪ ( 𝐼 ∖ { 𝑋 } ) ) = ( { 𝑋 } ∪ 𝐼 )
11 3 snssd ( 𝜑 → { 𝑋 } ⊆ 𝐼 )
12 ssequn1 ( { 𝑋 } ⊆ 𝐼 ↔ ( { 𝑋 } ∪ 𝐼 ) = 𝐼 )
13 11 12 sylib ( 𝜑 → ( { 𝑋 } ∪ 𝐼 ) = 𝐼 )
14 10 13 syl5req ( 𝜑𝐼 = ( { 𝑋 } ∪ ( 𝐼 ∖ { 𝑋 } ) ) )
15 eqid ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 )
16 7 9 14 15 4 dmdprdsplit ( 𝜑 → ( 𝐺 dom DProd 𝑆 ↔ ( ( 𝐺 dom DProd ( 𝑆 ↾ { 𝑋 } ) ∧ 𝐺 dom DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑋 } ) ) ) ∧ ( 𝐺 DProd ( 𝑆 ↾ { 𝑋 } ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑋 } ) ) ) ) ∧ ( ( 𝐺 DProd ( 𝑆 ↾ { 𝑋 } ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑋 } ) ) ) ) = { 0 } ) ) )
17 1 16 mpbid ( 𝜑 → ( ( 𝐺 dom DProd ( 𝑆 ↾ { 𝑋 } ) ∧ 𝐺 dom DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑋 } ) ) ) ∧ ( 𝐺 DProd ( 𝑆 ↾ { 𝑋 } ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑋 } ) ) ) ) ∧ ( ( 𝐺 DProd ( 𝑆 ↾ { 𝑋 } ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑋 } ) ) ) ) = { 0 } ) )
18 17 simp3d ( 𝜑 → ( ( 𝐺 DProd ( 𝑆 ↾ { 𝑋 } ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑋 } ) ) ) ) = { 0 } )
19 6 18 eqtr3d ( 𝜑 → ( ( 𝑆𝑋 ) ∩ ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑋 } ) ) ) ) = { 0 } )