Step |
Hyp |
Ref |
Expression |
1 |
|
dpjfval.1 |
|- ( ph -> G dom DProd S ) |
2 |
|
dpjfval.2 |
|- ( ph -> dom S = I ) |
3 |
|
dpjlem.3 |
|- ( ph -> X e. I ) |
4 |
|
dpjdisj.0 |
|- .0. = ( 0g ` G ) |
5 |
1 2 3
|
dpjlem |
|- ( ph -> ( G DProd ( S |` { X } ) ) = ( S ` X ) ) |
6 |
5
|
ineq1d |
|- ( ph -> ( ( G DProd ( S |` { X } ) ) i^i ( G DProd ( S |` ( I \ { X } ) ) ) ) = ( ( S ` X ) i^i ( G DProd ( S |` ( I \ { X } ) ) ) ) ) |
7 |
1 2
|
dprdf2 |
|- ( ph -> S : I --> ( SubGrp ` G ) ) |
8 |
|
disjdif |
|- ( { X } i^i ( I \ { X } ) ) = (/) |
9 |
8
|
a1i |
|- ( ph -> ( { X } i^i ( I \ { X } ) ) = (/) ) |
10 |
|
undif2 |
|- ( { X } u. ( I \ { X } ) ) = ( { X } u. I ) |
11 |
3
|
snssd |
|- ( ph -> { X } C_ I ) |
12 |
|
ssequn1 |
|- ( { X } C_ I <-> ( { X } u. I ) = I ) |
13 |
11 12
|
sylib |
|- ( ph -> ( { X } u. I ) = I ) |
14 |
10 13
|
eqtr2id |
|- ( ph -> I = ( { X } u. ( I \ { X } ) ) ) |
15 |
|
eqid |
|- ( Cntz ` G ) = ( Cntz ` G ) |
16 |
7 9 14 15 4
|
dmdprdsplit |
|- ( ph -> ( G dom DProd S <-> ( ( G dom DProd ( S |` { X } ) /\ G dom DProd ( S |` ( I \ { X } ) ) ) /\ ( G DProd ( S |` { X } ) ) C_ ( ( Cntz ` G ) ` ( G DProd ( S |` ( I \ { X } ) ) ) ) /\ ( ( G DProd ( S |` { X } ) ) i^i ( G DProd ( S |` ( I \ { X } ) ) ) ) = { .0. } ) ) ) |
17 |
1 16
|
mpbid |
|- ( ph -> ( ( G dom DProd ( S |` { X } ) /\ G dom DProd ( S |` ( I \ { X } ) ) ) /\ ( G DProd ( S |` { X } ) ) C_ ( ( Cntz ` G ) ` ( G DProd ( S |` ( I \ { X } ) ) ) ) /\ ( ( G DProd ( S |` { X } ) ) i^i ( G DProd ( S |` ( I \ { X } ) ) ) ) = { .0. } ) ) |
18 |
17
|
simp3d |
|- ( ph -> ( ( G DProd ( S |` { X } ) ) i^i ( G DProd ( S |` ( I \ { X } ) ) ) ) = { .0. } ) |
19 |
6 18
|
eqtr3d |
|- ( ph -> ( ( S ` X ) i^i ( G DProd ( S |` ( I \ { X } ) ) ) ) = { .0. } ) |