Metamath Proof Explorer


Theorem dpjdisj

Description: The two subgroups that appear in dpjval are disjoint. (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses dpjfval.1
|- ( ph -> G dom DProd S )
dpjfval.2
|- ( ph -> dom S = I )
dpjlem.3
|- ( ph -> X e. I )
dpjdisj.0
|- .0. = ( 0g ` G )
Assertion dpjdisj
|- ( ph -> ( ( S ` X ) i^i ( G DProd ( S |` ( I \ { X } ) ) ) ) = { .0. } )

Proof

Step Hyp Ref Expression
1 dpjfval.1
 |-  ( ph -> G dom DProd S )
2 dpjfval.2
 |-  ( ph -> dom S = I )
3 dpjlem.3
 |-  ( ph -> X e. I )
4 dpjdisj.0
 |-  .0. = ( 0g ` G )
5 1 2 3 dpjlem
 |-  ( ph -> ( G DProd ( S |` { X } ) ) = ( S ` X ) )
6 5 ineq1d
 |-  ( ph -> ( ( G DProd ( S |` { X } ) ) i^i ( G DProd ( S |` ( I \ { X } ) ) ) ) = ( ( S ` X ) i^i ( G DProd ( S |` ( I \ { X } ) ) ) ) )
7 1 2 dprdf2
 |-  ( ph -> S : I --> ( SubGrp ` G ) )
8 disjdif
 |-  ( { X } i^i ( I \ { X } ) ) = (/)
9 8 a1i
 |-  ( ph -> ( { X } i^i ( I \ { X } ) ) = (/) )
10 undif2
 |-  ( { X } u. ( I \ { X } ) ) = ( { X } u. I )
11 3 snssd
 |-  ( ph -> { X } C_ I )
12 ssequn1
 |-  ( { X } C_ I <-> ( { X } u. I ) = I )
13 11 12 sylib
 |-  ( ph -> ( { X } u. I ) = I )
14 10 13 eqtr2id
 |-  ( ph -> I = ( { X } u. ( I \ { X } ) ) )
15 eqid
 |-  ( Cntz ` G ) = ( Cntz ` G )
16 7 9 14 15 4 dmdprdsplit
 |-  ( ph -> ( G dom DProd S <-> ( ( G dom DProd ( S |` { X } ) /\ G dom DProd ( S |` ( I \ { X } ) ) ) /\ ( G DProd ( S |` { X } ) ) C_ ( ( Cntz ` G ) ` ( G DProd ( S |` ( I \ { X } ) ) ) ) /\ ( ( G DProd ( S |` { X } ) ) i^i ( G DProd ( S |` ( I \ { X } ) ) ) ) = { .0. } ) ) )
17 1 16 mpbid
 |-  ( ph -> ( ( G dom DProd ( S |` { X } ) /\ G dom DProd ( S |` ( I \ { X } ) ) ) /\ ( G DProd ( S |` { X } ) ) C_ ( ( Cntz ` G ) ` ( G DProd ( S |` ( I \ { X } ) ) ) ) /\ ( ( G DProd ( S |` { X } ) ) i^i ( G DProd ( S |` ( I \ { X } ) ) ) ) = { .0. } ) )
18 17 simp3d
 |-  ( ph -> ( ( G DProd ( S |` { X } ) ) i^i ( G DProd ( S |` ( I \ { X } ) ) ) ) = { .0. } )
19 6 18 eqtr3d
 |-  ( ph -> ( ( S ` X ) i^i ( G DProd ( S |` ( I \ { X } ) ) ) ) = { .0. } )