| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2re |
|- 2 e. RR |
| 2 |
|
simpl |
|- ( ( N e. NN /\ K e. ZZ ) -> N e. NN ) |
| 3 |
|
nndivre |
|- ( ( 2 e. RR /\ N e. NN ) -> ( 2 / N ) e. RR ) |
| 4 |
1 2 3
|
sylancr |
|- ( ( N e. NN /\ K e. ZZ ) -> ( 2 / N ) e. RR ) |
| 5 |
4
|
recnd |
|- ( ( N e. NN /\ K e. ZZ ) -> ( 2 / N ) e. CC ) |
| 6 |
|
ax-icn |
|- _i e. CC |
| 7 |
|
picn |
|- _pi e. CC |
| 8 |
6 7
|
mulcli |
|- ( _i x. _pi ) e. CC |
| 9 |
8
|
a1i |
|- ( ( N e. NN /\ K e. ZZ ) -> ( _i x. _pi ) e. CC ) |
| 10 |
5 9
|
mulcld |
|- ( ( N e. NN /\ K e. ZZ ) -> ( ( 2 / N ) x. ( _i x. _pi ) ) e. CC ) |
| 11 |
|
efexp |
|- ( ( ( ( 2 / N ) x. ( _i x. _pi ) ) e. CC /\ K e. ZZ ) -> ( exp ` ( K x. ( ( 2 / N ) x. ( _i x. _pi ) ) ) ) = ( ( exp ` ( ( 2 / N ) x. ( _i x. _pi ) ) ) ^ K ) ) |
| 12 |
10 11
|
sylancom |
|- ( ( N e. NN /\ K e. ZZ ) -> ( exp ` ( K x. ( ( 2 / N ) x. ( _i x. _pi ) ) ) ) = ( ( exp ` ( ( 2 / N ) x. ( _i x. _pi ) ) ) ^ K ) ) |
| 13 |
|
zcn |
|- ( K e. ZZ -> K e. CC ) |
| 14 |
13
|
adantl |
|- ( ( N e. NN /\ K e. ZZ ) -> K e. CC ) |
| 15 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
| 16 |
15
|
adantr |
|- ( ( N e. NN /\ K e. ZZ ) -> N e. CC ) |
| 17 |
|
2cn |
|- 2 e. CC |
| 18 |
17
|
a1i |
|- ( ( N e. NN /\ K e. ZZ ) -> 2 e. CC ) |
| 19 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
| 20 |
19
|
adantr |
|- ( ( N e. NN /\ K e. ZZ ) -> N =/= 0 ) |
| 21 |
14 16 18 20
|
div32d |
|- ( ( N e. NN /\ K e. ZZ ) -> ( ( K / N ) x. 2 ) = ( K x. ( 2 / N ) ) ) |
| 22 |
21
|
oveq1d |
|- ( ( N e. NN /\ K e. ZZ ) -> ( ( ( K / N ) x. 2 ) x. ( _i x. _pi ) ) = ( ( K x. ( 2 / N ) ) x. ( _i x. _pi ) ) ) |
| 23 |
14 16 20
|
divcld |
|- ( ( N e. NN /\ K e. ZZ ) -> ( K / N ) e. CC ) |
| 24 |
23 18 9
|
mulassd |
|- ( ( N e. NN /\ K e. ZZ ) -> ( ( ( K / N ) x. 2 ) x. ( _i x. _pi ) ) = ( ( K / N ) x. ( 2 x. ( _i x. _pi ) ) ) ) |
| 25 |
14 5 9
|
mulassd |
|- ( ( N e. NN /\ K e. ZZ ) -> ( ( K x. ( 2 / N ) ) x. ( _i x. _pi ) ) = ( K x. ( ( 2 / N ) x. ( _i x. _pi ) ) ) ) |
| 26 |
22 24 25
|
3eqtr3d |
|- ( ( N e. NN /\ K e. ZZ ) -> ( ( K / N ) x. ( 2 x. ( _i x. _pi ) ) ) = ( K x. ( ( 2 / N ) x. ( _i x. _pi ) ) ) ) |
| 27 |
26
|
fveq2d |
|- ( ( N e. NN /\ K e. ZZ ) -> ( exp ` ( ( K / N ) x. ( 2 x. ( _i x. _pi ) ) ) ) = ( exp ` ( K x. ( ( 2 / N ) x. ( _i x. _pi ) ) ) ) ) |
| 28 |
|
neg1cn |
|- -u 1 e. CC |
| 29 |
28
|
a1i |
|- ( ( N e. NN /\ K e. ZZ ) -> -u 1 e. CC ) |
| 30 |
|
neg1ne0 |
|- -u 1 =/= 0 |
| 31 |
30
|
a1i |
|- ( ( N e. NN /\ K e. ZZ ) -> -u 1 =/= 0 ) |
| 32 |
29 31 5
|
cxpefd |
|- ( ( N e. NN /\ K e. ZZ ) -> ( -u 1 ^c ( 2 / N ) ) = ( exp ` ( ( 2 / N ) x. ( log ` -u 1 ) ) ) ) |
| 33 |
|
logm1 |
|- ( log ` -u 1 ) = ( _i x. _pi ) |
| 34 |
33
|
oveq2i |
|- ( ( 2 / N ) x. ( log ` -u 1 ) ) = ( ( 2 / N ) x. ( _i x. _pi ) ) |
| 35 |
34
|
fveq2i |
|- ( exp ` ( ( 2 / N ) x. ( log ` -u 1 ) ) ) = ( exp ` ( ( 2 / N ) x. ( _i x. _pi ) ) ) |
| 36 |
32 35
|
eqtrdi |
|- ( ( N e. NN /\ K e. ZZ ) -> ( -u 1 ^c ( 2 / N ) ) = ( exp ` ( ( 2 / N ) x. ( _i x. _pi ) ) ) ) |
| 37 |
36
|
oveq1d |
|- ( ( N e. NN /\ K e. ZZ ) -> ( ( -u 1 ^c ( 2 / N ) ) ^ K ) = ( ( exp ` ( ( 2 / N ) x. ( _i x. _pi ) ) ) ^ K ) ) |
| 38 |
12 27 37
|
3eqtr4rd |
|- ( ( N e. NN /\ K e. ZZ ) -> ( ( -u 1 ^c ( 2 / N ) ) ^ K ) = ( exp ` ( ( K / N ) x. ( 2 x. ( _i x. _pi ) ) ) ) ) |
| 39 |
38
|
eqeq1d |
|- ( ( N e. NN /\ K e. ZZ ) -> ( ( ( -u 1 ^c ( 2 / N ) ) ^ K ) = 1 <-> ( exp ` ( ( K / N ) x. ( 2 x. ( _i x. _pi ) ) ) ) = 1 ) ) |
| 40 |
17 8
|
mulcli |
|- ( 2 x. ( _i x. _pi ) ) e. CC |
| 41 |
|
mulcl |
|- ( ( ( K / N ) e. CC /\ ( 2 x. ( _i x. _pi ) ) e. CC ) -> ( ( K / N ) x. ( 2 x. ( _i x. _pi ) ) ) e. CC ) |
| 42 |
23 40 41
|
sylancl |
|- ( ( N e. NN /\ K e. ZZ ) -> ( ( K / N ) x. ( 2 x. ( _i x. _pi ) ) ) e. CC ) |
| 43 |
|
efeq1 |
|- ( ( ( K / N ) x. ( 2 x. ( _i x. _pi ) ) ) e. CC -> ( ( exp ` ( ( K / N ) x. ( 2 x. ( _i x. _pi ) ) ) ) = 1 <-> ( ( ( K / N ) x. ( 2 x. ( _i x. _pi ) ) ) / ( _i x. ( 2 x. _pi ) ) ) e. ZZ ) ) |
| 44 |
42 43
|
syl |
|- ( ( N e. NN /\ K e. ZZ ) -> ( ( exp ` ( ( K / N ) x. ( 2 x. ( _i x. _pi ) ) ) ) = 1 <-> ( ( ( K / N ) x. ( 2 x. ( _i x. _pi ) ) ) / ( _i x. ( 2 x. _pi ) ) ) e. ZZ ) ) |
| 45 |
6 17 7
|
mul12i |
|- ( _i x. ( 2 x. _pi ) ) = ( 2 x. ( _i x. _pi ) ) |
| 46 |
45
|
oveq2i |
|- ( ( ( K / N ) x. ( 2 x. ( _i x. _pi ) ) ) / ( _i x. ( 2 x. _pi ) ) ) = ( ( ( K / N ) x. ( 2 x. ( _i x. _pi ) ) ) / ( 2 x. ( _i x. _pi ) ) ) |
| 47 |
40
|
a1i |
|- ( ( N e. NN /\ K e. ZZ ) -> ( 2 x. ( _i x. _pi ) ) e. CC ) |
| 48 |
|
2ne0 |
|- 2 =/= 0 |
| 49 |
|
ine0 |
|- _i =/= 0 |
| 50 |
|
pire |
|- _pi e. RR |
| 51 |
|
pipos |
|- 0 < _pi |
| 52 |
50 51
|
gt0ne0ii |
|- _pi =/= 0 |
| 53 |
6 7 49 52
|
mulne0i |
|- ( _i x. _pi ) =/= 0 |
| 54 |
17 8 48 53
|
mulne0i |
|- ( 2 x. ( _i x. _pi ) ) =/= 0 |
| 55 |
54
|
a1i |
|- ( ( N e. NN /\ K e. ZZ ) -> ( 2 x. ( _i x. _pi ) ) =/= 0 ) |
| 56 |
23 47 55
|
divcan4d |
|- ( ( N e. NN /\ K e. ZZ ) -> ( ( ( K / N ) x. ( 2 x. ( _i x. _pi ) ) ) / ( 2 x. ( _i x. _pi ) ) ) = ( K / N ) ) |
| 57 |
46 56
|
eqtrid |
|- ( ( N e. NN /\ K e. ZZ ) -> ( ( ( K / N ) x. ( 2 x. ( _i x. _pi ) ) ) / ( _i x. ( 2 x. _pi ) ) ) = ( K / N ) ) |
| 58 |
57
|
eleq1d |
|- ( ( N e. NN /\ K e. ZZ ) -> ( ( ( ( K / N ) x. ( 2 x. ( _i x. _pi ) ) ) / ( _i x. ( 2 x. _pi ) ) ) e. ZZ <-> ( K / N ) e. ZZ ) ) |
| 59 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
| 60 |
59
|
adantr |
|- ( ( N e. NN /\ K e. ZZ ) -> N e. ZZ ) |
| 61 |
|
simpr |
|- ( ( N e. NN /\ K e. ZZ ) -> K e. ZZ ) |
| 62 |
|
dvdsval2 |
|- ( ( N e. ZZ /\ N =/= 0 /\ K e. ZZ ) -> ( N || K <-> ( K / N ) e. ZZ ) ) |
| 63 |
60 20 61 62
|
syl3anc |
|- ( ( N e. NN /\ K e. ZZ ) -> ( N || K <-> ( K / N ) e. ZZ ) ) |
| 64 |
58 63
|
bitr4d |
|- ( ( N e. NN /\ K e. ZZ ) -> ( ( ( ( K / N ) x. ( 2 x. ( _i x. _pi ) ) ) / ( _i x. ( 2 x. _pi ) ) ) e. ZZ <-> N || K ) ) |
| 65 |
39 44 64
|
3bitrd |
|- ( ( N e. NN /\ K e. ZZ ) -> ( ( ( -u 1 ^c ( 2 / N ) ) ^ K ) = 1 <-> N || K ) ) |