Step |
Hyp |
Ref |
Expression |
1 |
|
2re |
|
2 |
|
simpl |
|
3 |
|
nndivre |
|
4 |
1 2 3
|
sylancr |
|
5 |
4
|
recnd |
|
6 |
|
ax-icn |
|
7 |
|
picn |
|
8 |
6 7
|
mulcli |
|
9 |
8
|
a1i |
|
10 |
5 9
|
mulcld |
|
11 |
|
efexp |
|
12 |
10 11
|
sylancom |
|
13 |
|
zcn |
|
14 |
13
|
adantl |
|
15 |
|
nncn |
|
16 |
15
|
adantr |
|
17 |
|
2cn |
|
18 |
17
|
a1i |
|
19 |
|
nnne0 |
|
20 |
19
|
adantr |
|
21 |
14 16 18 20
|
div32d |
|
22 |
21
|
oveq1d |
|
23 |
14 16 20
|
divcld |
|
24 |
23 18 9
|
mulassd |
|
25 |
14 5 9
|
mulassd |
|
26 |
22 24 25
|
3eqtr3d |
|
27 |
26
|
fveq2d |
|
28 |
|
neg1cn |
|
29 |
28
|
a1i |
|
30 |
|
neg1ne0 |
|
31 |
30
|
a1i |
|
32 |
29 31 5
|
cxpefd |
|
33 |
|
logm1 |
|
34 |
33
|
oveq2i |
|
35 |
34
|
fveq2i |
|
36 |
32 35
|
eqtrdi |
|
37 |
36
|
oveq1d |
|
38 |
12 27 37
|
3eqtr4rd |
|
39 |
38
|
eqeq1d |
|
40 |
17 8
|
mulcli |
|
41 |
|
mulcl |
|
42 |
23 40 41
|
sylancl |
|
43 |
|
efeq1 |
|
44 |
42 43
|
syl |
|
45 |
6 17 7
|
mul12i |
|
46 |
45
|
oveq2i |
|
47 |
40
|
a1i |
|
48 |
|
2ne0 |
|
49 |
|
ine0 |
|
50 |
|
pire |
|
51 |
|
pipos |
|
52 |
50 51
|
gt0ne0ii |
|
53 |
6 7 49 52
|
mulne0i |
|
54 |
17 8 48 53
|
mulne0i |
|
55 |
54
|
a1i |
|
56 |
23 47 55
|
divcan4d |
|
57 |
46 56
|
eqtrid |
|
58 |
57
|
eleq1d |
|
59 |
|
nnz |
|
60 |
59
|
adantr |
|
61 |
|
simpr |
|
62 |
|
dvdsval2 |
|
63 |
60 20 61 62
|
syl3anc |
|
64 |
58 63
|
bitr4d |
|
65 |
39 44 64
|
3bitrd |
|