Metamath Proof Explorer


Theorem root1eq1

Description: The only powers of an N -th root of unity that equal 1 are the multiples of N . In other words, -u 1 ^c ( 2 / N ) has order N in the multiplicative group of nonzero complex numbers. (In fact, these and their powers are the only elements of finite order in the complex numbers.) (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Assertion root1eq1 NK-12NK=1NK

Proof

Step Hyp Ref Expression
1 2re 2
2 simpl NKN
3 nndivre 2N2N
4 1 2 3 sylancr NK2N
5 4 recnd NK2N
6 ax-icn i
7 picn π
8 6 7 mulcli iπ
9 8 a1i NKiπ
10 5 9 mulcld NK2Niπ
11 efexp 2NiπKeK2Niπ=e2NiπK
12 10 11 sylancom NKeK2Niπ=e2NiπK
13 zcn KK
14 13 adantl NKK
15 nncn NN
16 15 adantr NKN
17 2cn 2
18 17 a1i NK2
19 nnne0 NN0
20 19 adantr NKN0
21 14 16 18 20 div32d NKKN2=K2N
22 21 oveq1d NKKN2iπ=K2Niπ
23 14 16 20 divcld NKKN
24 23 18 9 mulassd NKKN2iπ=KN2iπ
25 14 5 9 mulassd NKK2Niπ=K2Niπ
26 22 24 25 3eqtr3d NKKN2iπ=K2Niπ
27 26 fveq2d NKeKN2iπ=eK2Niπ
28 neg1cn 1
29 28 a1i NK1
30 neg1ne0 10
31 30 a1i NK10
32 29 31 5 cxpefd NK12N=e2Nlog-1
33 logm1 log-1=iπ
34 33 oveq2i 2Nlog-1=2Niπ
35 34 fveq2i e2Nlog-1=e2Niπ
36 32 35 eqtrdi NK12N=e2Niπ
37 36 oveq1d NK-12NK=e2NiπK
38 12 27 37 3eqtr4rd NK-12NK=eKN2iπ
39 38 eqeq1d NK-12NK=1eKN2iπ=1
40 17 8 mulcli 2iπ
41 mulcl KN2iπKN2iπ
42 23 40 41 sylancl NKKN2iπ
43 efeq1 KN2iπeKN2iπ=1KN2iπi2π
44 42 43 syl NKeKN2iπ=1KN2iπi2π
45 6 17 7 mul12i i2π=2iπ
46 45 oveq2i KN2iπi2π=KN2iπ2iπ
47 40 a1i NK2iπ
48 2ne0 20
49 ine0 i0
50 pire π
51 pipos 0<π
52 50 51 gt0ne0ii π0
53 6 7 49 52 mulne0i iπ0
54 17 8 48 53 mulne0i 2iπ0
55 54 a1i NK2iπ0
56 23 47 55 divcan4d NKKN2iπ2iπ=KN
57 46 56 eqtrid NKKN2iπi2π=KN
58 57 eleq1d NKKN2iπi2πKN
59 nnz NN
60 59 adantr NKN
61 simpr NKK
62 dvdsval2 NN0KNKKN
63 60 20 61 62 syl3anc NKNKKN
64 58 63 bitr4d NKKN2iπi2πNK
65 39 44 64 3bitrd NK-12NK=1NK