Description: The only powers of an N -th root of unity that equal 1 are the multiples of N . In other words, -u 1 ^c ( 2 / N ) has order N in the multiplicative group of nonzero complex numbers. (In fact, these and their powers are the only elements of finite order in the complex numbers.) (Contributed by Mario Carneiro, 28-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | root1eq1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re | |
|
2 | simpl | |
|
3 | nndivre | |
|
4 | 1 2 3 | sylancr | |
5 | 4 | recnd | |
6 | ax-icn | |
|
7 | picn | |
|
8 | 6 7 | mulcli | |
9 | 8 | a1i | |
10 | 5 9 | mulcld | |
11 | efexp | |
|
12 | 10 11 | sylancom | |
13 | zcn | |
|
14 | 13 | adantl | |
15 | nncn | |
|
16 | 15 | adantr | |
17 | 2cn | |
|
18 | 17 | a1i | |
19 | nnne0 | |
|
20 | 19 | adantr | |
21 | 14 16 18 20 | div32d | |
22 | 21 | oveq1d | |
23 | 14 16 20 | divcld | |
24 | 23 18 9 | mulassd | |
25 | 14 5 9 | mulassd | |
26 | 22 24 25 | 3eqtr3d | |
27 | 26 | fveq2d | |
28 | neg1cn | |
|
29 | 28 | a1i | |
30 | neg1ne0 | |
|
31 | 30 | a1i | |
32 | 29 31 5 | cxpefd | |
33 | logm1 | |
|
34 | 33 | oveq2i | |
35 | 34 | fveq2i | |
36 | 32 35 | eqtrdi | |
37 | 36 | oveq1d | |
38 | 12 27 37 | 3eqtr4rd | |
39 | 38 | eqeq1d | |
40 | 17 8 | mulcli | |
41 | mulcl | |
|
42 | 23 40 41 | sylancl | |
43 | efeq1 | |
|
44 | 42 43 | syl | |
45 | 6 17 7 | mul12i | |
46 | 45 | oveq2i | |
47 | 40 | a1i | |
48 | 2ne0 | |
|
49 | ine0 | |
|
50 | pire | |
|
51 | pipos | |
|
52 | 50 51 | gt0ne0ii | |
53 | 6 7 49 52 | mulne0i | |
54 | 17 8 48 53 | mulne0i | |
55 | 54 | a1i | |
56 | 23 47 55 | divcan4d | |
57 | 46 56 | eqtrid | |
58 | 57 | eleq1d | |
59 | nnz | |
|
60 | 59 | adantr | |
61 | simpr | |
|
62 | dvdsval2 | |
|
63 | 60 20 61 62 | syl3anc | |
64 | 58 63 | bitr4d | |
65 | 39 44 64 | 3bitrd | |