| Step |
Hyp |
Ref |
Expression |
| 1 |
|
neg1cn |
|
| 2 |
|
2re |
|
| 3 |
|
simpl |
|
| 4 |
|
nndivre |
|
| 5 |
2 3 4
|
sylancr |
|
| 6 |
5
|
recnd |
|
| 7 |
|
cxpcl |
|
| 8 |
1 6 7
|
sylancr |
|
| 9 |
1
|
a1i |
|
| 10 |
|
neg1ne0 |
|
| 11 |
10
|
a1i |
|
| 12 |
9 11 6
|
cxpne0d |
|
| 13 |
|
simpr |
|
| 14 |
|
nnz |
|
| 15 |
14
|
adantr |
|
| 16 |
8 12 13 15
|
expsubd |
|
| 17 |
|
root1id |
|
| 18 |
17
|
adantr |
|
| 19 |
18
|
oveq1d |
|
| 20 |
8 12 13
|
expclzd |
|
| 21 |
8 12 13
|
expne0d |
|
| 22 |
|
recval |
|
| 23 |
20 21 22
|
syl2anc |
|
| 24 |
|
absexpz |
|
| 25 |
8 12 13 24
|
syl3anc |
|
| 26 |
|
abscxp2 |
|
| 27 |
1 5 26
|
sylancr |
|
| 28 |
|
ax-1cn |
|
| 29 |
28
|
absnegi |
|
| 30 |
|
abs1 |
|
| 31 |
29 30
|
eqtri |
|
| 32 |
31
|
oveq1i |
|
| 33 |
27 32
|
eqtrdi |
|
| 34 |
6
|
1cxpd |
|
| 35 |
33 34
|
eqtrd |
|
| 36 |
35
|
oveq1d |
|
| 37 |
|
1exp |
|
| 38 |
37
|
adantl |
|
| 39 |
25 36 38
|
3eqtrd |
|
| 40 |
39
|
oveq1d |
|
| 41 |
|
sq1 |
|
| 42 |
40 41
|
eqtrdi |
|
| 43 |
42
|
oveq2d |
|
| 44 |
20
|
cjcld |
|
| 45 |
44
|
div1d |
|
| 46 |
23 43 45
|
3eqtrd |
|
| 47 |
16 19 46
|
3eqtrrd |
|