| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl2 |
|
| 2 |
|
nnm1nn0 |
|
| 3 |
1 2
|
syl |
|
| 4 |
|
nn0uz |
|
| 5 |
3 4
|
eleqtrdi |
|
| 6 |
|
eluzfz1 |
|
| 7 |
5 6
|
syl |
|
| 8 |
|
neg1cn |
|
| 9 |
|
2re |
|
| 10 |
|
simp2 |
|
| 11 |
|
nndivre |
|
| 12 |
9 10 11
|
sylancr |
|
| 13 |
12
|
recnd |
|
| 14 |
|
cxpcl |
|
| 15 |
8 13 14
|
sylancr |
|
| 16 |
15
|
adantr |
|
| 17 |
|
0nn0 |
|
| 18 |
|
expcl |
|
| 19 |
16 17 18
|
sylancl |
|
| 20 |
19
|
mul02d |
|
| 21 |
|
simprl |
|
| 22 |
21
|
oveq1d |
|
| 23 |
|
simprr |
|
| 24 |
1
|
0expd |
|
| 25 |
22 23 24
|
3eqtr3d |
|
| 26 |
25
|
oveq1d |
|
| 27 |
|
nncn |
|
| 28 |
|
nnne0 |
|
| 29 |
|
reccl |
|
| 30 |
|
recne0 |
|
| 31 |
29 30
|
0cxpd |
|
| 32 |
27 28 31
|
syl2anc |
|
| 33 |
1 32
|
syl |
|
| 34 |
26 33
|
eqtrd |
|
| 35 |
34
|
oveq1d |
|
| 36 |
20 35 21
|
3eqtr4rd |
|
| 37 |
|
oveq2 |
|
| 38 |
37
|
oveq2d |
|
| 39 |
38
|
rspceeqv |
|
| 40 |
7 36 39
|
syl2anc |
|
| 41 |
40
|
expr |
|
| 42 |
|
simpl1 |
|
| 43 |
|
simpr |
|
| 44 |
|
simpl2 |
|
| 45 |
44
|
nnzd |
|
| 46 |
|
explog |
|
| 47 |
42 43 45 46
|
syl3anc |
|
| 48 |
47
|
eqcomd |
|
| 49 |
10
|
nncnd |
|
| 50 |
49
|
adantr |
|
| 51 |
42 43
|
logcld |
|
| 52 |
50 51
|
mulcld |
|
| 53 |
44
|
nnnn0d |
|
| 54 |
42 53
|
expcld |
|
| 55 |
42 43 45
|
expne0d |
|
| 56 |
|
eflogeq |
|
| 57 |
52 54 55 56
|
syl3anc |
|
| 58 |
48 57
|
mpbid |
|
| 59 |
54 55
|
logcld |
|
| 60 |
59
|
adantr |
|
| 61 |
|
ax-icn |
|
| 62 |
|
2cn |
|
| 63 |
|
picn |
|
| 64 |
62 63
|
mulcli |
|
| 65 |
61 64
|
mulcli |
|
| 66 |
|
zcn |
|
| 67 |
66
|
adantl |
|
| 68 |
|
mulcl |
|
| 69 |
65 67 68
|
sylancr |
|
| 70 |
60 69
|
addcld |
|
| 71 |
50
|
adantr |
|
| 72 |
51
|
adantr |
|
| 73 |
10
|
nnne0d |
|
| 74 |
73
|
ad2antrr |
|
| 75 |
70 71 72 74
|
divmuld |
|
| 76 |
|
fveq2 |
|
| 77 |
71 74
|
reccld |
|
| 78 |
77 60
|
mulcld |
|
| 79 |
13
|
ad2antrr |
|
| 80 |
79 67
|
mulcld |
|
| 81 |
61 63
|
mulcli |
|
| 82 |
|
mulcl |
|
| 83 |
80 81 82
|
sylancl |
|
| 84 |
|
efadd |
|
| 85 |
78 83 84
|
syl2anc |
|
| 86 |
60 69 71 74
|
divdird |
|
| 87 |
60 71 74
|
divrec2d |
|
| 88 |
65
|
a1i |
|
| 89 |
88 67 71 74
|
div23d |
|
| 90 |
61 62 63
|
mul12i |
|
| 91 |
90
|
oveq1i |
|
| 92 |
62
|
a1i |
|
| 93 |
81
|
a1i |
|
| 94 |
92 93 71 74
|
div23d |
|
| 95 |
91 94
|
eqtrid |
|
| 96 |
95
|
oveq1d |
|
| 97 |
79 93 67
|
mul32d |
|
| 98 |
89 96 97
|
3eqtrd |
|
| 99 |
87 98
|
oveq12d |
|
| 100 |
86 99
|
eqtrd |
|
| 101 |
100
|
fveq2d |
|
| 102 |
54
|
adantr |
|
| 103 |
55
|
adantr |
|
| 104 |
102 103 77
|
cxpefd |
|
| 105 |
8
|
a1i |
|
| 106 |
|
neg1ne0 |
|
| 107 |
106
|
a1i |
|
| 108 |
|
simpr |
|
| 109 |
105 107 79 108
|
cxpmul2zd |
|
| 110 |
105 107 80
|
cxpefd |
|
| 111 |
|
logm1 |
|
| 112 |
111
|
oveq2i |
|
| 113 |
112
|
fveq2i |
|
| 114 |
110 113
|
eqtrdi |
|
| 115 |
105 79
|
cxpcld |
|
| 116 |
8
|
a1i |
|
| 117 |
106
|
a1i |
|
| 118 |
116 117 13
|
cxpne0d |
|
| 119 |
118
|
ad2antrr |
|
| 120 |
115 119 108
|
expclzd |
|
| 121 |
44
|
adantr |
|
| 122 |
108 121
|
zmodcld |
|
| 123 |
115 122
|
expcld |
|
| 124 |
122
|
nn0zd |
|
| 125 |
115 119 124
|
expne0d |
|
| 126 |
115 119 124 108
|
expsubd |
|
| 127 |
121
|
nnzd |
|
| 128 |
|
zre |
|
| 129 |
121
|
nnrpd |
|
| 130 |
|
moddifz |
|
| 131 |
128 129 130
|
syl2an2 |
|
| 132 |
|
expmulz |
|
| 133 |
115 119 127 131 132
|
syl22anc |
|
| 134 |
122
|
nn0cnd |
|
| 135 |
67 134
|
subcld |
|
| 136 |
135 71 74
|
divcan2d |
|
| 137 |
136
|
oveq2d |
|
| 138 |
|
root1id |
|
| 139 |
121 138
|
syl |
|
| 140 |
139
|
oveq1d |
|
| 141 |
|
1exp |
|
| 142 |
131 141
|
syl |
|
| 143 |
140 142
|
eqtrd |
|
| 144 |
133 137 143
|
3eqtr3d |
|
| 145 |
126 144
|
eqtr3d |
|
| 146 |
120 123 125 145
|
diveq1d |
|
| 147 |
109 114 146
|
3eqtr3rd |
|
| 148 |
104 147
|
oveq12d |
|
| 149 |
85 101 148
|
3eqtr4d |
|
| 150 |
|
eflog |
|
| 151 |
42 43 150
|
syl2anc |
|
| 152 |
151
|
adantr |
|
| 153 |
149 152
|
eqeq12d |
|
| 154 |
|
zmodfz |
|
| 155 |
108 121 154
|
syl2anc |
|
| 156 |
|
eqcom |
|
| 157 |
|
oveq2 |
|
| 158 |
157
|
oveq2d |
|
| 159 |
158
|
eqeq1d |
|
| 160 |
156 159
|
bitrid |
|
| 161 |
160
|
rspcev |
|
| 162 |
161
|
ex |
|
| 163 |
155 162
|
syl |
|
| 164 |
153 163
|
sylbid |
|
| 165 |
76 164
|
syl5 |
|
| 166 |
75 165
|
sylbird |
|
| 167 |
166
|
rexlimdva |
|
| 168 |
58 167
|
mpd |
|
| 169 |
|
oveq1 |
|
| 170 |
169
|
oveq1d |
|
| 171 |
170
|
eqeq2d |
|
| 172 |
171
|
rexbidv |
|
| 173 |
168 172
|
syl5ibcom |
|
| 174 |
41 173
|
pm2.61dane |
|
| 175 |
|
simp3 |
|
| 176 |
|
nnrecre |
|
| 177 |
176
|
3ad2ant2 |
|
| 178 |
177
|
recnd |
|
| 179 |
175 178
|
cxpcld |
|
| 180 |
179
|
adantr |
|
| 181 |
|
elfznn0 |
|
| 182 |
|
expcl |
|
| 183 |
15 181 182
|
syl2an |
|
| 184 |
10
|
adantr |
|
| 185 |
184
|
nnnn0d |
|
| 186 |
180 183 185
|
mulexpd |
|
| 187 |
175
|
adantr |
|
| 188 |
|
cxproot |
|
| 189 |
187 184 188
|
syl2anc |
|
| 190 |
181
|
adantl |
|
| 191 |
190
|
nn0cnd |
|
| 192 |
184
|
nncnd |
|
| 193 |
191 192
|
mulcomd |
|
| 194 |
193
|
oveq2d |
|
| 195 |
15
|
adantr |
|
| 196 |
195 185 190
|
expmuld |
|
| 197 |
195 190 185
|
expmuld |
|
| 198 |
194 196 197
|
3eqtr3d |
|
| 199 |
184 138
|
syl |
|
| 200 |
199
|
oveq1d |
|
| 201 |
|
elfzelz |
|
| 202 |
201
|
adantl |
|
| 203 |
|
1exp |
|
| 204 |
202 203
|
syl |
|
| 205 |
198 200 204
|
3eqtrd |
|
| 206 |
189 205
|
oveq12d |
|
| 207 |
187
|
mulridd |
|
| 208 |
186 206 207
|
3eqtrd |
|
| 209 |
|
oveq1 |
|
| 210 |
209
|
eqeq1d |
|
| 211 |
208 210
|
syl5ibrcom |
|
| 212 |
211
|
rexlimdva |
|
| 213 |
174 212
|
impbid |
|