Step |
Hyp |
Ref |
Expression |
1 |
|
simpl2 |
|
2 |
|
nnm1nn0 |
|
3 |
1 2
|
syl |
|
4 |
|
nn0uz |
|
5 |
3 4
|
eleqtrdi |
|
6 |
|
eluzfz1 |
|
7 |
5 6
|
syl |
|
8 |
|
neg1cn |
|
9 |
|
2re |
|
10 |
|
simp2 |
|
11 |
|
nndivre |
|
12 |
9 10 11
|
sylancr |
|
13 |
12
|
recnd |
|
14 |
|
cxpcl |
|
15 |
8 13 14
|
sylancr |
|
16 |
15
|
adantr |
|
17 |
|
0nn0 |
|
18 |
|
expcl |
|
19 |
16 17 18
|
sylancl |
|
20 |
19
|
mul02d |
|
21 |
|
simprl |
|
22 |
21
|
oveq1d |
|
23 |
|
simprr |
|
24 |
1
|
0expd |
|
25 |
22 23 24
|
3eqtr3d |
|
26 |
25
|
oveq1d |
|
27 |
|
nncn |
|
28 |
|
nnne0 |
|
29 |
|
reccl |
|
30 |
|
recne0 |
|
31 |
29 30
|
0cxpd |
|
32 |
27 28 31
|
syl2anc |
|
33 |
1 32
|
syl |
|
34 |
26 33
|
eqtrd |
|
35 |
34
|
oveq1d |
|
36 |
20 35 21
|
3eqtr4rd |
|
37 |
|
oveq2 |
|
38 |
37
|
oveq2d |
|
39 |
38
|
rspceeqv |
|
40 |
7 36 39
|
syl2anc |
|
41 |
40
|
expr |
|
42 |
|
simpl1 |
|
43 |
|
simpr |
|
44 |
|
simpl2 |
|
45 |
44
|
nnzd |
|
46 |
|
explog |
|
47 |
42 43 45 46
|
syl3anc |
|
48 |
47
|
eqcomd |
|
49 |
10
|
nncnd |
|
50 |
49
|
adantr |
|
51 |
42 43
|
logcld |
|
52 |
50 51
|
mulcld |
|
53 |
44
|
nnnn0d |
|
54 |
42 53
|
expcld |
|
55 |
42 43 45
|
expne0d |
|
56 |
|
eflogeq |
|
57 |
52 54 55 56
|
syl3anc |
|
58 |
48 57
|
mpbid |
|
59 |
54 55
|
logcld |
|
60 |
59
|
adantr |
|
61 |
|
ax-icn |
|
62 |
|
2cn |
|
63 |
|
picn |
|
64 |
62 63
|
mulcli |
|
65 |
61 64
|
mulcli |
|
66 |
|
zcn |
|
67 |
66
|
adantl |
|
68 |
|
mulcl |
|
69 |
65 67 68
|
sylancr |
|
70 |
60 69
|
addcld |
|
71 |
50
|
adantr |
|
72 |
51
|
adantr |
|
73 |
10
|
nnne0d |
|
74 |
73
|
ad2antrr |
|
75 |
70 71 72 74
|
divmuld |
|
76 |
|
fveq2 |
|
77 |
71 74
|
reccld |
|
78 |
77 60
|
mulcld |
|
79 |
13
|
ad2antrr |
|
80 |
79 67
|
mulcld |
|
81 |
61 63
|
mulcli |
|
82 |
|
mulcl |
|
83 |
80 81 82
|
sylancl |
|
84 |
|
efadd |
|
85 |
78 83 84
|
syl2anc |
|
86 |
60 69 71 74
|
divdird |
|
87 |
60 71 74
|
divrec2d |
|
88 |
65
|
a1i |
|
89 |
88 67 71 74
|
div23d |
|
90 |
61 62 63
|
mul12i |
|
91 |
90
|
oveq1i |
|
92 |
62
|
a1i |
|
93 |
81
|
a1i |
|
94 |
92 93 71 74
|
div23d |
|
95 |
91 94
|
eqtrid |
|
96 |
95
|
oveq1d |
|
97 |
79 93 67
|
mul32d |
|
98 |
89 96 97
|
3eqtrd |
|
99 |
87 98
|
oveq12d |
|
100 |
86 99
|
eqtrd |
|
101 |
100
|
fveq2d |
|
102 |
54
|
adantr |
|
103 |
55
|
adantr |
|
104 |
102 103 77
|
cxpefd |
|
105 |
8
|
a1i |
|
106 |
|
neg1ne0 |
|
107 |
106
|
a1i |
|
108 |
|
simpr |
|
109 |
105 107 79 108
|
cxpmul2zd |
|
110 |
105 107 80
|
cxpefd |
|
111 |
|
logm1 |
|
112 |
111
|
oveq2i |
|
113 |
112
|
fveq2i |
|
114 |
110 113
|
eqtrdi |
|
115 |
105 79
|
cxpcld |
|
116 |
8
|
a1i |
|
117 |
106
|
a1i |
|
118 |
116 117 13
|
cxpne0d |
|
119 |
118
|
ad2antrr |
|
120 |
115 119 108
|
expclzd |
|
121 |
44
|
adantr |
|
122 |
108 121
|
zmodcld |
|
123 |
115 122
|
expcld |
|
124 |
122
|
nn0zd |
|
125 |
115 119 124
|
expne0d |
|
126 |
115 119 124 108
|
expsubd |
|
127 |
121
|
nnzd |
|
128 |
|
zre |
|
129 |
121
|
nnrpd |
|
130 |
|
moddifz |
|
131 |
128 129 130
|
syl2an2 |
|
132 |
|
expmulz |
|
133 |
115 119 127 131 132
|
syl22anc |
|
134 |
122
|
nn0cnd |
|
135 |
67 134
|
subcld |
|
136 |
135 71 74
|
divcan2d |
|
137 |
136
|
oveq2d |
|
138 |
|
root1id |
|
139 |
121 138
|
syl |
|
140 |
139
|
oveq1d |
|
141 |
|
1exp |
|
142 |
131 141
|
syl |
|
143 |
140 142
|
eqtrd |
|
144 |
133 137 143
|
3eqtr3d |
|
145 |
126 144
|
eqtr3d |
|
146 |
120 123 125 145
|
diveq1d |
|
147 |
109 114 146
|
3eqtr3rd |
|
148 |
104 147
|
oveq12d |
|
149 |
85 101 148
|
3eqtr4d |
|
150 |
|
eflog |
|
151 |
42 43 150
|
syl2anc |
|
152 |
151
|
adantr |
|
153 |
149 152
|
eqeq12d |
|
154 |
|
zmodfz |
|
155 |
108 121 154
|
syl2anc |
|
156 |
|
eqcom |
|
157 |
|
oveq2 |
|
158 |
157
|
oveq2d |
|
159 |
158
|
eqeq1d |
|
160 |
156 159
|
syl5bb |
|
161 |
160
|
rspcev |
|
162 |
161
|
ex |
|
163 |
155 162
|
syl |
|
164 |
153 163
|
sylbid |
|
165 |
76 164
|
syl5 |
|
166 |
75 165
|
sylbird |
|
167 |
166
|
rexlimdva |
|
168 |
58 167
|
mpd |
|
169 |
|
oveq1 |
|
170 |
169
|
oveq1d |
|
171 |
170
|
eqeq2d |
|
172 |
171
|
rexbidv |
|
173 |
168 172
|
syl5ibcom |
|
174 |
41 173
|
pm2.61dane |
|
175 |
|
simp3 |
|
176 |
|
nnrecre |
|
177 |
176
|
3ad2ant2 |
|
178 |
177
|
recnd |
|
179 |
175 178
|
cxpcld |
|
180 |
179
|
adantr |
|
181 |
|
elfznn0 |
|
182 |
|
expcl |
|
183 |
15 181 182
|
syl2an |
|
184 |
10
|
adantr |
|
185 |
184
|
nnnn0d |
|
186 |
180 183 185
|
mulexpd |
|
187 |
175
|
adantr |
|
188 |
|
cxproot |
|
189 |
187 184 188
|
syl2anc |
|
190 |
181
|
adantl |
|
191 |
190
|
nn0cnd |
|
192 |
184
|
nncnd |
|
193 |
191 192
|
mulcomd |
|
194 |
193
|
oveq2d |
|
195 |
15
|
adantr |
|
196 |
195 185 190
|
expmuld |
|
197 |
195 190 185
|
expmuld |
|
198 |
194 196 197
|
3eqtr3d |
|
199 |
184 138
|
syl |
|
200 |
199
|
oveq1d |
|
201 |
|
elfzelz |
|
202 |
201
|
adantl |
|
203 |
|
1exp |
|
204 |
202 203
|
syl |
|
205 |
198 200 204
|
3eqtrd |
|
206 |
189 205
|
oveq12d |
|
207 |
187
|
mulid1d |
|
208 |
186 206 207
|
3eqtrd |
|
209 |
|
oveq1 |
|
210 |
209
|
eqeq1d |
|
211 |
208 210
|
syl5ibrcom |
|
212 |
211
|
rexlimdva |
|
213 |
174 212
|
impbid |
|