Metamath Proof Explorer


Theorem moddifz

Description: The modulo operation differs from A by an integer multiple of B . (Contributed by Mario Carneiro, 15-Jul-2014)

Ref Expression
Assertion moddifz AB+AAmodBB

Proof

Step Hyp Ref Expression
1 moddiffl AB+AAmodBB=AB
2 rerpdivcl AB+AB
3 2 flcld AB+AB
4 1 3 eqeltrd AB+AAmodBB