Metamath Proof Explorer


Theorem 0cxpd

Description: Value of the complex power function when the first argument is zero. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses cxp0d.1 φA
cxpefd.2 φA0
Assertion 0cxpd φ0A=0

Proof

Step Hyp Ref Expression
1 cxp0d.1 φA
2 cxpefd.2 φA0
3 0cxp AA00A=0
4 1 2 3 syl2anc φ0A=0