Metamath Proof Explorer


Theorem 0cxp

Description: Value of the complex power function when the first argument is zero. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion 0cxp AA00A=0

Proof

Step Hyp Ref Expression
1 0cn 0
2 cxpval 0A0A=if0=0ifA=010eAlog0
3 1 2 mpan A0A=if0=0ifA=010eAlog0
4 eqid 0=0
5 4 iftruei if0=0ifA=010eAlog0=ifA=010
6 3 5 eqtrdi A0A=ifA=010
7 ifnefalse A0ifA=010=0
8 6 7 sylan9eq AA00A=0