| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dchrabl.g |
|
| 2 |
|
eqidd |
|
| 3 |
|
eqidd |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
|
simp2 |
|
| 8 |
|
simp3 |
|
| 9 |
1 4 5 6 7 8
|
dchrmulcl |
|
| 10 |
|
fvexd |
|
| 11 |
|
eqid |
|
| 12 |
1 4 5 11 7
|
dchrf |
|
| 13 |
12
|
3adant3r3 |
|
| 14 |
1 4 5 11 8
|
dchrf |
|
| 15 |
14
|
3adant3r3 |
|
| 16 |
|
simpr3 |
|
| 17 |
1 4 5 11 16
|
dchrf |
|
| 18 |
|
mulass |
|
| 19 |
18
|
adantl |
|
| 20 |
10 13 15 17 19
|
caofass |
|
| 21 |
|
simpr1 |
|
| 22 |
|
simpr2 |
|
| 23 |
1 4 5 6 21 22
|
dchrmul |
|
| 24 |
23
|
oveq1d |
|
| 25 |
1 4 5 6 22 16
|
dchrmul |
|
| 26 |
25
|
oveq2d |
|
| 27 |
20 24 26
|
3eqtr4d |
|
| 28 |
9
|
3adant3r3 |
|
| 29 |
1 4 5 6 28 16
|
dchrmul |
|
| 30 |
1 4 5 6 22 16
|
dchrmulcl |
|
| 31 |
1 4 5 6 21 30
|
dchrmul |
|
| 32 |
27 29 31
|
3eqtr4d |
|
| 33 |
|
eqid |
|
| 34 |
|
eqid |
|
| 35 |
|
id |
|
| 36 |
1 4 5 11 33 34 35
|
dchr1cl |
|
| 37 |
|
simpr |
|
| 38 |
1 4 5 11 33 34 6 37
|
dchrmullid |
|
| 39 |
|
eqid |
|
| 40 |
1 4 5 11 33 34 6 37 39
|
dchrinvcl |
|
| 41 |
40
|
simpld |
|
| 42 |
40
|
simprd |
|
| 43 |
2 3 9 32 36 38 41 42
|
isgrpd |
|
| 44 |
|
fvexd |
|
| 45 |
|
mulcom |
|
| 46 |
45
|
adantl |
|
| 47 |
44 12 14 46
|
caofcom |
|
| 48 |
1 4 5 6 7 8
|
dchrmul |
|
| 49 |
1 4 5 6 8 7
|
dchrmul |
|
| 50 |
47 48 49
|
3eqtr4d |
|
| 51 |
2 3 43 50
|
isabld |
|