Metamath Proof Explorer


Theorem dchrabs2

Description: A Dirichlet character takes values inside the unit circle. (Contributed by Mario Carneiro, 3-May-2016)

Ref Expression
Hypotheses dchrabs2.g G=DChrN
dchrabs2.d D=BaseG
dchrabs2.z Z=/N
dchrabs2.b B=BaseZ
dchrabs2.x φXD
dchrabs2.a φAB
Assertion dchrabs2 φXA1

Proof

Step Hyp Ref Expression
1 dchrabs2.g G=DChrN
2 dchrabs2.d D=BaseG
3 dchrabs2.z Z=/N
4 dchrabs2.b B=BaseZ
5 dchrabs2.x φXD
6 dchrabs2.a φAB
7 simpr φXA=0XA=0
8 7 abs00bd φXA=0XA=0
9 0le1 01
10 8 9 eqbrtrdi φXA=0XA1
11 5 adantr φXA0XD
12 eqid UnitZ=UnitZ
13 1 3 2 4 12 5 6 dchrn0 φXA0AUnitZ
14 13 biimpa φXA0AUnitZ
15 1 2 11 3 12 14 dchrabs φXA0XA=1
16 1le1 11
17 15 16 eqbrtrdi φXA0XA1
18 10 17 pm2.61dane φXA1