| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dchrmhm.g |
|- G = ( DChr ` N ) |
| 2 |
|
dchrmhm.z |
|- Z = ( Z/nZ ` N ) |
| 3 |
|
dchrmhm.b |
|- D = ( Base ` G ) |
| 4 |
|
dchrmul.t |
|- .x. = ( +g ` G ) |
| 5 |
|
dchrplusg.n |
|- ( ph -> N e. NN ) |
| 6 |
|
eqid |
|- ( Base ` Z ) = ( Base ` Z ) |
| 7 |
|
eqid |
|- ( Unit ` Z ) = ( Unit ` Z ) |
| 8 |
1 2 6 7 5 3
|
dchrbas |
|- ( ph -> D = { x e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) | ( ( ( Base ` Z ) \ ( Unit ` Z ) ) X. { 0 } ) C_ x } ) |
| 9 |
1 2 6 7 5 8
|
dchrval |
|- ( ph -> G = { <. ( Base ` ndx ) , D >. , <. ( +g ` ndx ) , ( oF x. |` ( D X. D ) ) >. } ) |
| 10 |
9
|
fveq2d |
|- ( ph -> ( +g ` G ) = ( +g ` { <. ( Base ` ndx ) , D >. , <. ( +g ` ndx ) , ( oF x. |` ( D X. D ) ) >. } ) ) |
| 11 |
3
|
fvexi |
|- D e. _V |
| 12 |
11 11
|
xpex |
|- ( D X. D ) e. _V |
| 13 |
|
ofexg |
|- ( ( D X. D ) e. _V -> ( oF x. |` ( D X. D ) ) e. _V ) |
| 14 |
|
eqid |
|- { <. ( Base ` ndx ) , D >. , <. ( +g ` ndx ) , ( oF x. |` ( D X. D ) ) >. } = { <. ( Base ` ndx ) , D >. , <. ( +g ` ndx ) , ( oF x. |` ( D X. D ) ) >. } |
| 15 |
14
|
grpplusg |
|- ( ( oF x. |` ( D X. D ) ) e. _V -> ( oF x. |` ( D X. D ) ) = ( +g ` { <. ( Base ` ndx ) , D >. , <. ( +g ` ndx ) , ( oF x. |` ( D X. D ) ) >. } ) ) |
| 16 |
12 13 15
|
mp2b |
|- ( oF x. |` ( D X. D ) ) = ( +g ` { <. ( Base ` ndx ) , D >. , <. ( +g ` ndx ) , ( oF x. |` ( D X. D ) ) >. } ) |
| 17 |
10 4 16
|
3eqtr4g |
|- ( ph -> .x. = ( oF x. |` ( D X. D ) ) ) |