Metamath Proof Explorer


Theorem dchrplusg

Description: Group operation on the group of Dirichlet characters. (Contributed by Mario Carneiro, 18-Apr-2016)

Ref Expression
Hypotheses dchrmhm.g G=DChrN
dchrmhm.z Z=/N
dchrmhm.b D=BaseG
dchrmul.t ·˙=+G
dchrplusg.n φN
Assertion dchrplusg φ·˙=f×D×D

Proof

Step Hyp Ref Expression
1 dchrmhm.g G=DChrN
2 dchrmhm.z Z=/N
3 dchrmhm.b D=BaseG
4 dchrmul.t ·˙=+G
5 dchrplusg.n φN
6 eqid BaseZ=BaseZ
7 eqid UnitZ=UnitZ
8 1 2 6 7 5 3 dchrbas φD=xmulGrpZMndHommulGrpfld|BaseZUnitZ×0x
9 1 2 6 7 5 8 dchrval φG=BasendxD+ndxf×D×D
10 9 fveq2d φ+G=+BasendxD+ndxf×D×D
11 3 fvexi DV
12 11 11 xpex D×DV
13 ofexg D×DVf×D×DV
14 eqid BasendxD+ndxf×D×D=BasendxD+ndxf×D×D
15 14 grpplusg f×D×DVf×D×D=+BasendxD+ndxf×D×D
16 12 13 15 mp2b f×D×D=+BasendxD+ndxf×D×D
17 10 4 16 3eqtr4g φ·˙=f×D×D