Metamath Proof Explorer


Theorem ofexg

Description: A function operation restricted to a set is a set. (Contributed by NM, 28-Jul-2014)

Ref Expression
Assertion ofexg AVfRAV

Proof

Step Hyp Ref Expression
1 df-of fR=fV,gVxdomfdomgfxRgx
2 1 mpofun FunfR
3 resfunexg FunfRAVfRAV
4 2 3 mpan AVfRAV