| Step |
Hyp |
Ref |
Expression |
| 1 |
|
decsplit0.1 |
|- A e. NN0 |
| 2 |
|
decsplit.2 |
|- B e. NN0 |
| 3 |
|
decsplit.3 |
|- D e. NN0 |
| 4 |
|
decsplit.4 |
|- M e. NN0 |
| 5 |
|
decsplit.5 |
|- ( M + 1 ) = N |
| 6 |
|
decsplit.6 |
|- ( ( A x. ( ; 1 0 ^ M ) ) + B ) = C |
| 7 |
|
10nn0 |
|- ; 1 0 e. NN0 |
| 8 |
7 4
|
nn0expcli |
|- ( ; 1 0 ^ M ) e. NN0 |
| 9 |
1 8
|
nn0mulcli |
|- ( A x. ( ; 1 0 ^ M ) ) e. NN0 |
| 10 |
7 9
|
nn0mulcli |
|- ( ; 1 0 x. ( A x. ( ; 1 0 ^ M ) ) ) e. NN0 |
| 11 |
10
|
nn0cni |
|- ( ; 1 0 x. ( A x. ( ; 1 0 ^ M ) ) ) e. CC |
| 12 |
7 2
|
nn0mulcli |
|- ( ; 1 0 x. B ) e. NN0 |
| 13 |
12
|
nn0cni |
|- ( ; 1 0 x. B ) e. CC |
| 14 |
3
|
nn0cni |
|- D e. CC |
| 15 |
11 13 14
|
addassi |
|- ( ( ( ; 1 0 x. ( A x. ( ; 1 0 ^ M ) ) ) + ( ; 1 0 x. B ) ) + D ) = ( ( ; 1 0 x. ( A x. ( ; 1 0 ^ M ) ) ) + ( ( ; 1 0 x. B ) + D ) ) |
| 16 |
7
|
nn0cni |
|- ; 1 0 e. CC |
| 17 |
9
|
nn0cni |
|- ( A x. ( ; 1 0 ^ M ) ) e. CC |
| 18 |
2
|
nn0cni |
|- B e. CC |
| 19 |
16 17 18
|
adddii |
|- ( ; 1 0 x. ( ( A x. ( ; 1 0 ^ M ) ) + B ) ) = ( ( ; 1 0 x. ( A x. ( ; 1 0 ^ M ) ) ) + ( ; 1 0 x. B ) ) |
| 20 |
6
|
oveq2i |
|- ( ; 1 0 x. ( ( A x. ( ; 1 0 ^ M ) ) + B ) ) = ( ; 1 0 x. C ) |
| 21 |
19 20
|
eqtr3i |
|- ( ( ; 1 0 x. ( A x. ( ; 1 0 ^ M ) ) ) + ( ; 1 0 x. B ) ) = ( ; 1 0 x. C ) |
| 22 |
21
|
oveq1i |
|- ( ( ( ; 1 0 x. ( A x. ( ; 1 0 ^ M ) ) ) + ( ; 1 0 x. B ) ) + D ) = ( ( ; 1 0 x. C ) + D ) |
| 23 |
15 22
|
eqtr3i |
|- ( ( ; 1 0 x. ( A x. ( ; 1 0 ^ M ) ) ) + ( ( ; 1 0 x. B ) + D ) ) = ( ( ; 1 0 x. C ) + D ) |
| 24 |
8
|
nn0cni |
|- ( ; 1 0 ^ M ) e. CC |
| 25 |
24 16
|
mulcomi |
|- ( ( ; 1 0 ^ M ) x. ; 1 0 ) = ( ; 1 0 x. ( ; 1 0 ^ M ) ) |
| 26 |
7 4 5 25
|
numexpp1 |
|- ( ; 1 0 ^ N ) = ( ; 1 0 x. ( ; 1 0 ^ M ) ) |
| 27 |
26
|
oveq2i |
|- ( A x. ( ; 1 0 ^ N ) ) = ( A x. ( ; 1 0 x. ( ; 1 0 ^ M ) ) ) |
| 28 |
1
|
nn0cni |
|- A e. CC |
| 29 |
28 16 24
|
mul12i |
|- ( A x. ( ; 1 0 x. ( ; 1 0 ^ M ) ) ) = ( ; 1 0 x. ( A x. ( ; 1 0 ^ M ) ) ) |
| 30 |
27 29
|
eqtri |
|- ( A x. ( ; 1 0 ^ N ) ) = ( ; 1 0 x. ( A x. ( ; 1 0 ^ M ) ) ) |
| 31 |
|
dfdec10 |
|- ; B D = ( ( ; 1 0 x. B ) + D ) |
| 32 |
30 31
|
oveq12i |
|- ( ( A x. ( ; 1 0 ^ N ) ) + ; B D ) = ( ( ; 1 0 x. ( A x. ( ; 1 0 ^ M ) ) ) + ( ( ; 1 0 x. B ) + D ) ) |
| 33 |
|
dfdec10 |
|- ; C D = ( ( ; 1 0 x. C ) + D ) |
| 34 |
23 32 33
|
3eqtr4i |
|- ( ( A x. ( ; 1 0 ^ N ) ) + ; B D ) = ; C D |