Description: The derangement number is a function from finite sets to nonnegative integers. (Contributed by Mario Carneiro, 19-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | derang.d | |- D = ( x e. Fin |-> ( # ` { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } ) ) | |
| Assertion | derangf | |- D : Fin --> NN0 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | derang.d |  |-  D = ( x e. Fin |-> ( # ` { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } ) ) | |
| 2 | deranglem |  |-  ( x e. Fin -> { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } e. Fin ) | |
| 3 | hashcl |  |-  ( { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } e. Fin -> ( # ` { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } ) e. NN0 ) | |
| 4 | 2 3 | syl |  |-  ( x e. Fin -> ( # ` { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } ) e. NN0 ) | 
| 5 | 1 4 | fmpti | |- D : Fin --> NN0 |