| Step | Hyp | Ref | Expression | 
						
							| 1 |  | derang.d |  |-  D = ( x e. Fin |-> ( # ` { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } ) ) | 
						
							| 2 |  | 0fi |  |-  (/) e. Fin | 
						
							| 3 | 1 | derangval |  |-  ( (/) e. Fin -> ( D ` (/) ) = ( # ` { f | ( f : (/) -1-1-onto-> (/) /\ A. y e. (/) ( f ` y ) =/= y ) } ) ) | 
						
							| 4 | 2 3 | ax-mp |  |-  ( D ` (/) ) = ( # ` { f | ( f : (/) -1-1-onto-> (/) /\ A. y e. (/) ( f ` y ) =/= y ) } ) | 
						
							| 5 |  | ral0 |  |-  A. y e. (/) ( f ` y ) =/= y | 
						
							| 6 | 5 | biantru |  |-  ( f : (/) -1-1-onto-> (/) <-> ( f : (/) -1-1-onto-> (/) /\ A. y e. (/) ( f ` y ) =/= y ) ) | 
						
							| 7 |  | eqid |  |-  (/) = (/) | 
						
							| 8 |  | f1o00 |  |-  ( f : (/) -1-1-onto-> (/) <-> ( f = (/) /\ (/) = (/) ) ) | 
						
							| 9 | 7 8 | mpbiran2 |  |-  ( f : (/) -1-1-onto-> (/) <-> f = (/) ) | 
						
							| 10 | 6 9 | bitr3i |  |-  ( ( f : (/) -1-1-onto-> (/) /\ A. y e. (/) ( f ` y ) =/= y ) <-> f = (/) ) | 
						
							| 11 | 10 | abbii |  |-  { f | ( f : (/) -1-1-onto-> (/) /\ A. y e. (/) ( f ` y ) =/= y ) } = { f | f = (/) } | 
						
							| 12 |  | df-sn |  |-  { (/) } = { f | f = (/) } | 
						
							| 13 | 11 12 | eqtr4i |  |-  { f | ( f : (/) -1-1-onto-> (/) /\ A. y e. (/) ( f ` y ) =/= y ) } = { (/) } | 
						
							| 14 | 13 | fveq2i |  |-  ( # ` { f | ( f : (/) -1-1-onto-> (/) /\ A. y e. (/) ( f ` y ) =/= y ) } ) = ( # ` { (/) } ) | 
						
							| 15 |  | 0ex |  |-  (/) e. _V | 
						
							| 16 |  | hashsng |  |-  ( (/) e. _V -> ( # ` { (/) } ) = 1 ) | 
						
							| 17 | 15 16 | ax-mp |  |-  ( # ` { (/) } ) = 1 | 
						
							| 18 | 4 14 17 | 3eqtri |  |-  ( D ` (/) ) = 1 |