Step |
Hyp |
Ref |
Expression |
1 |
|
derang.d |
⊢ 𝐷 = ( 𝑥 ∈ Fin ↦ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑥 –1-1-onto→ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ) ) |
2 |
|
0fin |
⊢ ∅ ∈ Fin |
3 |
1
|
derangval |
⊢ ( ∅ ∈ Fin → ( 𝐷 ‘ ∅ ) = ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : ∅ –1-1-onto→ ∅ ∧ ∀ 𝑦 ∈ ∅ ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ) ) |
4 |
2 3
|
ax-mp |
⊢ ( 𝐷 ‘ ∅ ) = ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : ∅ –1-1-onto→ ∅ ∧ ∀ 𝑦 ∈ ∅ ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ) |
5 |
|
ral0 |
⊢ ∀ 𝑦 ∈ ∅ ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 |
6 |
5
|
biantru |
⊢ ( 𝑓 : ∅ –1-1-onto→ ∅ ↔ ( 𝑓 : ∅ –1-1-onto→ ∅ ∧ ∀ 𝑦 ∈ ∅ ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) ) |
7 |
|
eqid |
⊢ ∅ = ∅ |
8 |
|
f1o00 |
⊢ ( 𝑓 : ∅ –1-1-onto→ ∅ ↔ ( 𝑓 = ∅ ∧ ∅ = ∅ ) ) |
9 |
7 8
|
mpbiran2 |
⊢ ( 𝑓 : ∅ –1-1-onto→ ∅ ↔ 𝑓 = ∅ ) |
10 |
6 9
|
bitr3i |
⊢ ( ( 𝑓 : ∅ –1-1-onto→ ∅ ∧ ∀ 𝑦 ∈ ∅ ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) ↔ 𝑓 = ∅ ) |
11 |
10
|
abbii |
⊢ { 𝑓 ∣ ( 𝑓 : ∅ –1-1-onto→ ∅ ∧ ∀ 𝑦 ∈ ∅ ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } = { 𝑓 ∣ 𝑓 = ∅ } |
12 |
|
df-sn |
⊢ { ∅ } = { 𝑓 ∣ 𝑓 = ∅ } |
13 |
11 12
|
eqtr4i |
⊢ { 𝑓 ∣ ( 𝑓 : ∅ –1-1-onto→ ∅ ∧ ∀ 𝑦 ∈ ∅ ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } = { ∅ } |
14 |
13
|
fveq2i |
⊢ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : ∅ –1-1-onto→ ∅ ∧ ∀ 𝑦 ∈ ∅ ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ) = ( ♯ ‘ { ∅ } ) |
15 |
|
0ex |
⊢ ∅ ∈ V |
16 |
|
hashsng |
⊢ ( ∅ ∈ V → ( ♯ ‘ { ∅ } ) = 1 ) |
17 |
15 16
|
ax-mp |
⊢ ( ♯ ‘ { ∅ } ) = 1 |
18 |
4 14 17
|
3eqtri |
⊢ ( 𝐷 ‘ ∅ ) = 1 |