| Step | Hyp | Ref | Expression | 
						
							| 1 |  | derang.d | ⊢ 𝐷  =  ( 𝑥  ∈  Fin  ↦  ( ♯ ‘ { 𝑓  ∣  ( 𝑓 : 𝑥 –1-1-onto→ 𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) } ) ) | 
						
							| 2 |  | 0fi | ⊢ ∅  ∈  Fin | 
						
							| 3 | 1 | derangval | ⊢ ( ∅  ∈  Fin  →  ( 𝐷 ‘ ∅ )  =  ( ♯ ‘ { 𝑓  ∣  ( 𝑓 : ∅ –1-1-onto→ ∅  ∧  ∀ 𝑦  ∈  ∅ ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) } ) ) | 
						
							| 4 | 2 3 | ax-mp | ⊢ ( 𝐷 ‘ ∅ )  =  ( ♯ ‘ { 𝑓  ∣  ( 𝑓 : ∅ –1-1-onto→ ∅  ∧  ∀ 𝑦  ∈  ∅ ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) } ) | 
						
							| 5 |  | ral0 | ⊢ ∀ 𝑦  ∈  ∅ ( 𝑓 ‘ 𝑦 )  ≠  𝑦 | 
						
							| 6 | 5 | biantru | ⊢ ( 𝑓 : ∅ –1-1-onto→ ∅  ↔  ( 𝑓 : ∅ –1-1-onto→ ∅  ∧  ∀ 𝑦  ∈  ∅ ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 7 |  | eqid | ⊢ ∅  =  ∅ | 
						
							| 8 |  | f1o00 | ⊢ ( 𝑓 : ∅ –1-1-onto→ ∅  ↔  ( 𝑓  =  ∅  ∧  ∅  =  ∅ ) ) | 
						
							| 9 | 7 8 | mpbiran2 | ⊢ ( 𝑓 : ∅ –1-1-onto→ ∅  ↔  𝑓  =  ∅ ) | 
						
							| 10 | 6 9 | bitr3i | ⊢ ( ( 𝑓 : ∅ –1-1-onto→ ∅  ∧  ∀ 𝑦  ∈  ∅ ( 𝑓 ‘ 𝑦 )  ≠  𝑦 )  ↔  𝑓  =  ∅ ) | 
						
							| 11 | 10 | abbii | ⊢ { 𝑓  ∣  ( 𝑓 : ∅ –1-1-onto→ ∅  ∧  ∀ 𝑦  ∈  ∅ ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) }  =  { 𝑓  ∣  𝑓  =  ∅ } | 
						
							| 12 |  | df-sn | ⊢ { ∅ }  =  { 𝑓  ∣  𝑓  =  ∅ } | 
						
							| 13 | 11 12 | eqtr4i | ⊢ { 𝑓  ∣  ( 𝑓 : ∅ –1-1-onto→ ∅  ∧  ∀ 𝑦  ∈  ∅ ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) }  =  { ∅ } | 
						
							| 14 | 13 | fveq2i | ⊢ ( ♯ ‘ { 𝑓  ∣  ( 𝑓 : ∅ –1-1-onto→ ∅  ∧  ∀ 𝑦  ∈  ∅ ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) } )  =  ( ♯ ‘ { ∅ } ) | 
						
							| 15 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 16 |  | hashsng | ⊢ ( ∅  ∈  V  →  ( ♯ ‘ { ∅ } )  =  1 ) | 
						
							| 17 | 15 16 | ax-mp | ⊢ ( ♯ ‘ { ∅ } )  =  1 | 
						
							| 18 | 4 14 17 | 3eqtri | ⊢ ( 𝐷 ‘ ∅ )  =  1 |