| Step | Hyp | Ref | Expression | 
						
							| 1 |  | derang.d | ⊢ 𝐷  =  ( 𝑥  ∈  Fin  ↦  ( ♯ ‘ { 𝑓  ∣  ( 𝑓 : 𝑥 –1-1-onto→ 𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) } ) ) | 
						
							| 2 |  | snfi | ⊢ { 𝐴 }  ∈  Fin | 
						
							| 3 | 1 | derangval | ⊢ ( { 𝐴 }  ∈  Fin  →  ( 𝐷 ‘ { 𝐴 } )  =  ( ♯ ‘ { 𝑓  ∣  ( 𝑓 : { 𝐴 } –1-1-onto→ { 𝐴 }  ∧  ∀ 𝑦  ∈  { 𝐴 } ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) } ) ) | 
						
							| 4 | 2 3 | ax-mp | ⊢ ( 𝐷 ‘ { 𝐴 } )  =  ( ♯ ‘ { 𝑓  ∣  ( 𝑓 : { 𝐴 } –1-1-onto→ { 𝐴 }  ∧  ∀ 𝑦  ∈  { 𝐴 } ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) } ) | 
						
							| 5 |  | f1of | ⊢ ( 𝑓 : { 𝐴 } –1-1-onto→ { 𝐴 }  →  𝑓 : { 𝐴 } ⟶ { 𝐴 } ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝑓 : { 𝐴 } –1-1-onto→ { 𝐴 }  ∧  ∀ 𝑦  ∈  { 𝐴 } ( 𝑓 ‘ 𝑦 )  ≠  𝑦 )  →  𝑓 : { 𝐴 } ⟶ { 𝐴 } ) | 
						
							| 7 |  | snidg | ⊢ ( 𝐴  ∈  𝑉  →  𝐴  ∈  { 𝐴 } ) | 
						
							| 8 |  | ffvelcdm | ⊢ ( ( 𝑓 : { 𝐴 } ⟶ { 𝐴 }  ∧  𝐴  ∈  { 𝐴 } )  →  ( 𝑓 ‘ 𝐴 )  ∈  { 𝐴 } ) | 
						
							| 9 | 6 7 8 | syl2anr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝑓 : { 𝐴 } –1-1-onto→ { 𝐴 }  ∧  ∀ 𝑦  ∈  { 𝐴 } ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) )  →  ( 𝑓 ‘ 𝐴 )  ∈  { 𝐴 } ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝑓 : { 𝐴 } –1-1-onto→ { 𝐴 }  ∧  ∀ 𝑦  ∈  { 𝐴 } ( 𝑓 ‘ 𝑦 )  ≠  𝑦 )  →  ∀ 𝑦  ∈  { 𝐴 } ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) | 
						
							| 11 |  | fveq2 | ⊢ ( 𝑦  =  𝐴  →  ( 𝑓 ‘ 𝑦 )  =  ( 𝑓 ‘ 𝐴 ) ) | 
						
							| 12 |  | id | ⊢ ( 𝑦  =  𝐴  →  𝑦  =  𝐴 ) | 
						
							| 13 | 11 12 | neeq12d | ⊢ ( 𝑦  =  𝐴  →  ( ( 𝑓 ‘ 𝑦 )  ≠  𝑦  ↔  ( 𝑓 ‘ 𝐴 )  ≠  𝐴 ) ) | 
						
							| 14 | 13 | rspcva | ⊢ ( ( 𝐴  ∈  { 𝐴 }  ∧  ∀ 𝑦  ∈  { 𝐴 } ( 𝑓 ‘ 𝑦 )  ≠  𝑦 )  →  ( 𝑓 ‘ 𝐴 )  ≠  𝐴 ) | 
						
							| 15 | 7 10 14 | syl2an | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝑓 : { 𝐴 } –1-1-onto→ { 𝐴 }  ∧  ∀ 𝑦  ∈  { 𝐴 } ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) )  →  ( 𝑓 ‘ 𝐴 )  ≠  𝐴 ) | 
						
							| 16 |  | nelsn | ⊢ ( ( 𝑓 ‘ 𝐴 )  ≠  𝐴  →  ¬  ( 𝑓 ‘ 𝐴 )  ∈  { 𝐴 } ) | 
						
							| 17 | 15 16 | syl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝑓 : { 𝐴 } –1-1-onto→ { 𝐴 }  ∧  ∀ 𝑦  ∈  { 𝐴 } ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) )  →  ¬  ( 𝑓 ‘ 𝐴 )  ∈  { 𝐴 } ) | 
						
							| 18 | 9 17 | pm2.21dd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝑓 : { 𝐴 } –1-1-onto→ { 𝐴 }  ∧  ∀ 𝑦  ∈  { 𝐴 } ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) )  →  𝑓  ∈  ∅ ) | 
						
							| 19 | 18 | ex | ⊢ ( 𝐴  ∈  𝑉  →  ( ( 𝑓 : { 𝐴 } –1-1-onto→ { 𝐴 }  ∧  ∀ 𝑦  ∈  { 𝐴 } ( 𝑓 ‘ 𝑦 )  ≠  𝑦 )  →  𝑓  ∈  ∅ ) ) | 
						
							| 20 | 19 | abssdv | ⊢ ( 𝐴  ∈  𝑉  →  { 𝑓  ∣  ( 𝑓 : { 𝐴 } –1-1-onto→ { 𝐴 }  ∧  ∀ 𝑦  ∈  { 𝐴 } ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) }  ⊆  ∅ ) | 
						
							| 21 |  | ss0 | ⊢ ( { 𝑓  ∣  ( 𝑓 : { 𝐴 } –1-1-onto→ { 𝐴 }  ∧  ∀ 𝑦  ∈  { 𝐴 } ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) }  ⊆  ∅  →  { 𝑓  ∣  ( 𝑓 : { 𝐴 } –1-1-onto→ { 𝐴 }  ∧  ∀ 𝑦  ∈  { 𝐴 } ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) }  =  ∅ ) | 
						
							| 22 | 20 21 | syl | ⊢ ( 𝐴  ∈  𝑉  →  { 𝑓  ∣  ( 𝑓 : { 𝐴 } –1-1-onto→ { 𝐴 }  ∧  ∀ 𝑦  ∈  { 𝐴 } ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) }  =  ∅ ) | 
						
							| 23 | 22 | fveq2d | ⊢ ( 𝐴  ∈  𝑉  →  ( ♯ ‘ { 𝑓  ∣  ( 𝑓 : { 𝐴 } –1-1-onto→ { 𝐴 }  ∧  ∀ 𝑦  ∈  { 𝐴 } ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) } )  =  ( ♯ ‘ ∅ ) ) | 
						
							| 24 | 4 23 | eqtrid | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝐷 ‘ { 𝐴 } )  =  ( ♯ ‘ ∅ ) ) | 
						
							| 25 |  | hash0 | ⊢ ( ♯ ‘ ∅ )  =  0 | 
						
							| 26 | 24 25 | eqtrdi | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝐷 ‘ { 𝐴 } )  =  0 ) |